build_cinn_pass.cc 23.3 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_proto_maker.h"
37
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
38
#include "paddle/fluid/operators/cinn/cinn_launch_op.h"
39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
41

42 43 44
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
45 46 47 48 49 50 51 52 53
namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;
54
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
55

56
namespace {
57 58 59 60
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
const std::unordered_map<std::string, std::unordered_set<std::string>>
    kDenyParamMap = {{"batch_norm", {"ReserveSpace"}},
                     {"batch_norm_grad", {"ReserveSpace"}}};

std::unordered_set<std::string> GetDenyVarNames(const GraphNodeSet& cluster) {
  std::unordered_set<std::string> deny_var_set;

  auto get_debug_info = [](const std::unordered_set<std::string>& var_names) {
    std::string debug_info = "[";
    for (auto& var : var_names) {
      debug_info.append(var);
      debug_info.append(", ");
    }
    debug_info.append("]");
    return debug_info;
  };

  for (auto* op : cluster) {
    if (kDenyParamMap.count(op->Name())) {
      const auto* desc = op->Op();
      PADDLE_ENFORCE_NE(desc, nullptr,
                        platform::errors::PreconditionNotMet(
                            "The Op %s's OpDesc should not be NULL, which has "
                            "a parameter in kDenyParamMap.",
                            op->Name().c_str()));

      auto deny_param_names = kDenyParamMap.at(op->Name());
      VLOG(4) << "We found deny param " << get_debug_info(deny_param_names)
              << " in op [" << op->Name() << "].";

      for (const auto& param_name : deny_param_names) {
        if (desc->Inputs().count(param_name)) {
          const auto& arg_names = desc->Input(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }

        if (desc->HasOutput(param_name)) {
          const auto& arg_names = desc->Output(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }
      }
    }
  }

  VLOG(4) << "All deny var names are " << get_debug_info(deny_var_set);

  return deny_var_set;
}

118 119 120 121 122 123 124 125 126 127
std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
      op_roles.insert(BOOST_GET_CONST(int, n->Op()->GetAttr(attr_name)));
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

143 144
// Deal with subgraph's feed input var node:
// create a new input var node and it's feed op node
145 146 147
void AddFeedOpAndVar(const GraphNodeSet& feed_vars, const GraphNodeSet& cluster,
                     const GraphNodeMap& old_op2new_op,
                     const GraphNodeMap& old_var2new_var, Graph* graph) {
148 149 150 151 152 153 154
  for (auto* old_var : feed_vars) {
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

155 156
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
157
    VLOG(4) << "Add Feed Op before: " << var->Name();
158 159

    // link feed op and feed var
160
    IR_NODE_LINK_TO(op, var);
161 162 163 164

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
165
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
166 167
      }
      // Do not need relink old op or old var here, they will be
168
      // fixed in RemoveSubGraphFromGraph, here we just deal with
169 170 171 172 173 174 175 176
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's parameter var node:
// create a new input var node, it's data will get by scope,
// so it don't need feed op
177 178 179
void AddParamVar(const GraphNodeSet& param_vars, const GraphNodeSet& cluster,
                 const GraphNodeMap& old_op2new_op,
                 const GraphNodeMap& old_var2new_var, Graph* graph) {
180
  for (auto* old_var : param_vars) {
181
    auto* var = old_var2new_var.at(old_var);
182
    VLOG(4) << "Add Param Var Node: " << var->Name();
183 184 185

    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
186
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
187 188 189 190 191 192 193
      }
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
194 195 196
void AddOutputVar(const GraphNodeSet& output_vars, const GraphNodeSet& cluster,
                  const GraphNodeMap& old_op2new_op,
                  const GraphNodeMap& old_var2new_var, Graph* graph) {
197
  for (auto* old_var : output_vars) {
198 199 200 201 202 203
    // create fetch op
    OpDesc desc;
    desc.SetType("fetch");
    desc.SetInput("X", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

204
    auto* var = old_var2new_var.at(old_var);
205
    VLOG(4) << "Add Output Var Node: " << var->Name();
206

207 208 209
    // link fetch op and fetch var
    IR_NODE_LINK_TO(var, op);

210 211
    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
212
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
213 214 215 216 217
      }
    }
  }
}

218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
std::unordered_set<std::string> ExtractNoNeedBufferFeeds(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs) {
  // 1. Find op with NoNeedBufferVarsInferer defined and collect its input nodes
  std::unordered_map<Node*, GraphNodeSet> op_node2no_need_buffer_nodes;
  for (auto* op_node : cluster) {
    auto& inferer =
        OpInfoMap::Instance().Get(op_node->Name()).NoNeedBufferVarsInferer();
    if (!inferer) {
      continue;
    }
    auto* op_desc = op_node->Op();
    PADDLE_ENFORCE_NOT_NULL(
        op_desc, platform::errors::PreconditionNotMet(
                     "The op desc of node in cluster shouldn't be null."));
    auto inferred_params =
        inferer(op_desc->Inputs(), op_desc->Inputs(), op_desc->GetAttrMap());
    std::unordered_set<std::string> inferred_args;
    std::for_each(inferred_params.begin(), inferred_params.end(),
                  [&op_desc, &inferred_args](const std::string& param) {
                    const auto& args = op_desc->Input(param);
                    inferred_args.insert(args.begin(), args.end());
                  });
    auto& no_need_buffer_nodes = op_node2no_need_buffer_nodes[op_node];
    for (auto* input_node : op_node->inputs) {
      if (input_node->Var() && inferred_args.count(input_node->Name())) {
        VLOG(4) << "Input node(" << input_node->Name() << ") of op("
                << op_node->Name() << ") is no_need_buffer";
        no_need_buffer_nodes.insert(input_node);
      }
    }
  }

  // 2. Extract no_need_buffer nodes from cluster_inputs by checking
  // all of their outputs are op nodes with NoNeedBufferVarsInferer
  // and they used as no_need_buffer inputs.
  auto check_all_used_as_no_need_buffer_fn =
      [&op_node2no_need_buffer_nodes](Node* var_node) -> bool {
    for (auto* output_node : var_node->outputs) {
      auto it = op_node2no_need_buffer_nodes.find(output_node);
      if (it == op_node2no_need_buffer_nodes.end()) {
        VLOG(4) << "Var node(" << var_node->Name() << ")'s output node("
                << output_node->Name()
                << ") doesn't have NoNeedBufferVarsInferer";
        return false;
      }
      if (it->second.count(var_node) == 0) {
        VLOG(4) << "Var node("
                << ") is not used as no_need_buffer inputs";
        return false;
      }
    }
    return true;
  };
  std::unordered_set<std::string> result;
  for (const auto& op2inputs_pair : op_node2no_need_buffer_nodes) {
    for (auto* input_node : op2inputs_pair.second) {
      if (cluster_inputs.count(input_node) &&
          check_all_used_as_no_need_buffer_fn(input_node)) {
        VLOG(4) << "Input node(" << input_node->Name()
                << ") is declared as no_need_buffer cluster_inputs";
        result.insert(input_node->Name());
      }
    }
  }
  return result;
}

J
jiangcheng 已提交
285 286
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
287 288
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
289 290
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
291 292
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
293
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
294

295
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
296
  for (auto* op : cluster) {
297
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
298 299 300
    old_op2new_op[op] = sub_node;
  }

301
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
302
  for (auto* var : cluster_internals) {
303 304 305 306 307
    PADDLE_ENFORCE_NOT_NULL(var->Var(),
                            platform::errors::PreconditionNotMet(
                                "The var desc of the node in cluster_internals "
                                "shouldn't be null."));
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
308 309
    old_var2new_var[var] = sub_node;
  }
310 311 312 313 314 315 316 317 318 319 320 321
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
322

323
  GraphNodeSet need_feed_vars;
324
  std::unordered_set<Node *> param_vars, output_vars;
J
jiangcheng 已提交
325 326 327 328 329
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
330 331 332 333
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
334
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
335 336 337 338 339 340 341 342 343 344 345
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
346 347 348 349
      }
    }
    for (auto* var : op->outputs) {
      if (cluster_internals.count(var)) {
350
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
351
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
352 353 354 355
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
356 357 358 359
      }
    }
  }

360 361 362 363 364 365
  AddFeedOpAndVar(need_feed_vars, cluster, old_op2new_op, old_var2new_var,
                  subgraph.get());
  AddParamVar(param_vars, cluster, old_op2new_op, old_var2new_var,
              subgraph.get());
  AddOutputVar(output_vars, cluster, old_op2new_op, old_var2new_var,
               subgraph.get());
366 367 368 369 370 371 372
  // Save lists of input variables, internal variables and output variables
  // of the cluster as attributes of the subgraph for convenience.
  auto collect_names_fn = [](
      const GraphNodeSet& nodes,
      const std::unordered_set<std::string>& ignore_names) {
    auto result = std::make_unique<std::vector<std::string>>();
    for (auto* node : nodes) {
373
      if (!node->Var() || ignore_names.count(node->Name())) {
374 375 376 377 378 379 380 381 382 383 384 385 386
        continue;
      }
      result->emplace_back(node->Name());
    }
    return result;
  };
  subgraph->Set<std::vector<std::string>>(
      kInternalVars, collect_names_fn(cluster_internals, {}).release());
  subgraph->Set<std::vector<std::string>>(
      kOutputVars, collect_names_fn(cluster_outputs, {}).release());
  // Divide input variables into two parts: one is common and will be used
  // in execution, the other may be empty and it is those variables whose
  // buffer are not needed and only be used in graph symbolization
387 388
  auto no_need_buffer_feeds = std::make_unique<std::unordered_set<std::string>>(
      ExtractNoNeedBufferFeeds(cluster, cluster_inputs));
389 390 391
  subgraph->Set<std::vector<std::string>>(
      kInputVars,
      collect_names_fn(cluster_inputs, *no_need_buffer_feeds).release());
392 393
  subgraph->Set<std::unordered_set<std::string>>(
      kNoNeedBufferFeeds, no_need_buffer_feeds.release());
394 395
  // initialize empty map for kMemOptVarInfoFromMainGraph attribute,
  // it will be filled on the share_mem_opt_info_to_subgraph pass
396
  subgraph->GetOrInit<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph);
397
  return subgraph;
J
jiangcheng 已提交
398 399 400 401
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
402 403 404
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
405
// out-graph should not using this node at all.
406 407
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
408 409 410 411 412
void AnalyseClusterVariables(
    const GraphNodeSet& cluster,
    const std::unordered_set<std::string>& deny_var_set,
    GraphNodeSet* cluster_inputs, GraphNodeSet* cluster_outputs,
    GraphNodeSet* cluster_internals) {
J
jiangcheng 已提交
413 414
  // collecting all input and output of op
  for (auto* op_node : cluster) {
415
    const auto& op_name = op_node->Name();
J
jiangcheng 已提交
416
    for (auto* input_var_node : op_node->inputs) {
417 418 419 420
      if (!deny_var_set.count(input_var_node->Name())) {
        // ignore deny var node
        cluster_inputs->insert(input_var_node);
      }
J
jiangcheng 已提交
421 422
    }
    for (auto* output_var_node : op_node->outputs) {
423 424 425
      if (!deny_var_set.count(output_var_node->Name())) {
        cluster_outputs->insert(output_var_node);
      }
J
jiangcheng 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
                     const GraphNodeSet& cluster_outputs, Node* cinn_op_node) {
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
469 470 471
                      const std::string& compilation_key,
                      const std::unordered_set<std::string>& deny_var_set,
                      Graph* graph) {
472 473 474
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
475

476 477
  const auto& subgraph =
      CinnCompiler::GetInstance()->FindGraph(compilation_key);
478
  const auto& no_need_buffer_feeds =
479 480
      subgraph.Get<std::unordered_set<std::string>>(kNoNeedBufferFeeds);

481 482 483 484 485 486 487
  cinn_op_desc.SetInput(operators::kX,
                        subgraph.Get<std::vector<std::string>>(kInputVars));
  cinn_op_desc.SetInput(operators::kNoNeedBufferX,
                        std::vector<std::string>(no_need_buffer_feeds.begin(),
                                                 no_need_buffer_feeds.end()));
  cinn_op_desc.SetOutput(operators::kOutputs,
                         subgraph.Get<std::vector<std::string>>(kOutputVars));
488
  cinn_op_desc.SetAttr(operators::kCompilationKey, compilation_key);
489 490 491 492 493 494
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
  // Add new links from or to the the cinn launch op node
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
495 496

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
497 498 499 500 501 502
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
503 504 505 506 507 508
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
509 510
}

511
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
512 513
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
514
// Meanwhile, move all links of cluster to the cinn op.
515 516 517 518 519
void ReplaceSubGraphWithCinnOpNode(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs,
    const GraphNodeSet& cluster_outputs, const GraphNodeSet& cluster_internals,
    const std::string& compilation_key,
    const std::unordered_set<std::string>& deny_var_set, Graph* graph) {
520 521
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
  AddCinnOpToGraph(cluster, cluster_inputs, cluster_outputs, compilation_key,
522
                   deny_var_set, graph);
523
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
524 525 526 527 528 529 530
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
531
void SearchAllSubgraphs(Graph* graph) {
532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
  auto teller = [&allow_ops, &deny_ops](const Node* node) {
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
                          node->Name()) != nullptr;
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
    if (allow_ops.size()) {
      return registered && allow_ops.count(node->Name());
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
    if (deny_ops.size()) {
      return registered && !deny_ops.count(node->Name());
    }
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
    return registered;
J
jiangcheng 已提交
550
  };
551 552
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
553 554 555
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

556 557 558 559 560 561 562 563 564 565
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

566
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
567
  for (const auto& node_vec : clusters) {
568
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
569 570
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

571 572
    auto deny_var_set = GetDenyVarNames(cluster_set);

J
jiangcheng 已提交
573
    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
574 575
    AnalyseClusterVariables(cluster_set, deny_var_set, &cluster_inputs,
                            &cluster_outputs, &cluster_internals);
576 577 578 579 580 581 582

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

583 584
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
585 586
    std::string compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
587 588
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
589

590 591
    // Replace the found cluster to a new cinn op node
    ReplaceSubGraphWithCinnOpNode(cluster_set, cluster_inputs, cluster_outputs,
592 593
                                  cluster_internals, compilation_key,
                                  deny_var_set, graph);
J
jiangcheng 已提交
594 595
  }
}
596
}  // namespace
J
jiangcheng 已提交
597

598
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
599 600 601 602 603 604

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);