build_cinn_pass.cc 24.2 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_proto_maker.h"
37
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
38
#include "paddle/fluid/operators/cinn/cinn_launch_op.h"
39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
41

42 43 44
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
45 46 47 48 49 50 51 52 53
namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;
54
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
55

56
namespace {
57 58 59 60
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

61 62 63 64
const std::unordered_map<std::string, std::unordered_set<std::string>>
    kDenyParamMap = {{"batch_norm", {"ReserveSpace"}},
                     {"batch_norm_grad", {"ReserveSpace"}}};

65 66
const std::unordered_set<std::string> kDefaultDenyOps = {"feed", "fetch"};

67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
std::unordered_set<std::string> GetDenyVarNames(const GraphNodeSet& cluster) {
  std::unordered_set<std::string> deny_var_set;

  auto get_debug_info = [](const std::unordered_set<std::string>& var_names) {
    std::string debug_info = "[";
    for (auto& var : var_names) {
      debug_info.append(var);
      debug_info.append(", ");
    }
    debug_info.append("]");
    return debug_info;
  };

  for (auto* op : cluster) {
    if (kDenyParamMap.count(op->Name())) {
      const auto* desc = op->Op();
83 84
      PADDLE_ENFORCE_NE(desc,
                        nullptr,
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
                        platform::errors::PreconditionNotMet(
                            "The Op %s's OpDesc should not be NULL, which has "
                            "a parameter in kDenyParamMap.",
                            op->Name().c_str()));

      auto deny_param_names = kDenyParamMap.at(op->Name());
      VLOG(4) << "We found deny param " << get_debug_info(deny_param_names)
              << " in op [" << op->Name() << "].";

      for (const auto& param_name : deny_param_names) {
        if (desc->Inputs().count(param_name)) {
          const auto& arg_names = desc->Input(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }

        if (desc->HasOutput(param_name)) {
          const auto& arg_names = desc->Output(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }
      }
    }
  }

  VLOG(4) << "All deny var names are " << get_debug_info(deny_var_set);

  return deny_var_set;
}

121 122 123 124 125 126 127 128 129 130
std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

131 132 133 134 135
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
R
Ruibiao Chen 已提交
136
      op_roles.insert(PADDLE_GET_CONST(int, n->Op()->GetAttr(attr_name)));
137 138 139 140 141 142 143 144 145
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

146
// Deal with input var nodes of the target subgraph:
147
// create a new input var node and it's feed op node
148
void AddFeedOpAndVar(const GraphNodeSet& input_vars,
149
                     const GraphNodeSet& cluster,
150
                     const GraphNodeMap& old_op2new_op,
151 152
                     const GraphNodeMap& old_var2new_var,
                     Graph* graph) {
153
  for (auto* old_var : input_vars) {
154 155 156 157 158 159
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

160 161
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
162
    VLOG(4) << "Add Feed Op before the input var: " << var->Name();
163 164

    // link feed op and feed var
165
    IR_NODE_LINK_TO(op, var);
166 167 168 169

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
170
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
171 172
      }
      // Do not need relink old op or old var here, they will be
173
      // fixed in RemoveSubGraphFromGraph, here we just deal with
174 175 176 177 178 179 180
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
181 182
void AddOutputVar(const GraphNodeSet& output_vars,
                  const GraphNodeSet& cluster,
183
                  const GraphNodeMap& old_op2new_op,
184 185
                  const GraphNodeMap& old_var2new_var,
                  Graph* graph) {
186
  for (auto* old_var : output_vars) {
187 188 189 190 191 192
    // create fetch op
    OpDesc desc;
    desc.SetType("fetch");
    desc.SetInput("X", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

193
    auto* var = old_var2new_var.at(old_var);
194
    VLOG(4) << "Add Output Var Node: " << var->Name();
195

196 197 198
    // link fetch op and fetch var
    IR_NODE_LINK_TO(var, op);

199 200
    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
201
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
202 203 204 205 206
      }
    }
  }
}

207 208 209 210 211
std::unordered_set<std::string> ExtractNoNeedBufferFeeds(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs) {
  // 1. Find op with NoNeedBufferVarsInferer defined and collect its input nodes
  std::unordered_map<Node*, GraphNodeSet> op_node2no_need_buffer_nodes;
  for (auto* op_node : cluster) {
212 213 214 215 216 217
    const auto* op = OpInfoMap::Instance().GetNullable(op_node->Name());
    // If op not registered in Paddle, skip
    if (!op) {
      continue;
    }
    auto& inferer = op->NoNeedBufferVarsInferer();
218 219 220 221 222
    if (!inferer) {
      continue;
    }
    auto* op_desc = op_node->Op();
    PADDLE_ENFORCE_NOT_NULL(
223 224 225
        op_desc,
        platform::errors::PreconditionNotMet(
            "The op desc of node in cluster shouldn't be null."));
226 227 228
    auto inferred_params =
        inferer(op_desc->Inputs(), op_desc->Inputs(), op_desc->GetAttrMap());
    std::unordered_set<std::string> inferred_args;
229 230
    std::for_each(inferred_params.begin(),
                  inferred_params.end(),
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
                  [&op_desc, &inferred_args](const std::string& param) {
                    const auto& args = op_desc->Input(param);
                    inferred_args.insert(args.begin(), args.end());
                  });
    auto& no_need_buffer_nodes = op_node2no_need_buffer_nodes[op_node];
    for (auto* input_node : op_node->inputs) {
      if (input_node->Var() && inferred_args.count(input_node->Name())) {
        VLOG(4) << "Input node(" << input_node->Name() << ") of op("
                << op_node->Name() << ") is no_need_buffer";
        no_need_buffer_nodes.insert(input_node);
      }
    }
  }

  // 2. Extract no_need_buffer nodes from cluster_inputs by checking
  // all of their outputs are op nodes with NoNeedBufferVarsInferer
  // and they used as no_need_buffer inputs.
  auto check_all_used_as_no_need_buffer_fn =
      [&op_node2no_need_buffer_nodes](Node* var_node) -> bool {
    for (auto* output_node : var_node->outputs) {
      auto it = op_node2no_need_buffer_nodes.find(output_node);
      if (it == op_node2no_need_buffer_nodes.end()) {
        VLOG(4) << "Var node(" << var_node->Name() << ")'s output node("
                << output_node->Name()
                << ") doesn't have NoNeedBufferVarsInferer";
        return false;
      }
      if (it->second.count(var_node) == 0) {
        VLOG(4) << "Var node("
                << ") is not used as no_need_buffer inputs";
        return false;
      }
    }
    return true;
  };
  std::unordered_set<std::string> result;
  for (const auto& op2inputs_pair : op_node2no_need_buffer_nodes) {
    for (auto* input_node : op2inputs_pair.second) {
      if (cluster_inputs.count(input_node) &&
          check_all_used_as_no_need_buffer_fn(input_node)) {
        VLOG(4) << "Input node(" << input_node->Name()
                << ") is declared as no_need_buffer cluster_inputs";
        result.insert(input_node->Name());
      }
    }
  }
  return result;
}

J
jiangcheng 已提交
280 281
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
282 283
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
284 285
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
286 287
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
288
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
289

290
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
291
  for (auto* op : cluster) {
292
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
293 294 295
    old_op2new_op[op] = sub_node;
  }

296
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
297
  for (auto* var : cluster_internals) {
298 299 300 301 302 303 304 305 306 307 308 309 310
    if (!var->Var()) {
      // skip control var

      // TODO(jiangcheng05): CINN not support control var now, so here we skip
      // it, but it may incur result incorrect problem. In detail, for two
      // unconnected ops, with control var, an op must run before another op.
      // If we remove the control var, the program wouldn't guarantee the run
      // ordering, in other words, the result may incorrect.
      VLOG(4)
          << "The internal var [" << var->Name() << "]'s vardesc empty,"
          << " it may be a control var, but CINN not support control var now.";
      continue;
    }
311
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
312 313
    old_var2new_var[var] = sub_node;
  }
314 315 316 317 318 319 320 321 322 323 324 325
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
326

327
  GraphNodeSet need_feed_vars;
328
  std::unordered_set<Node*> param_vars, output_vars;
J
jiangcheng 已提交
329 330 331 332 333
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
334 335 336 337
      if (!var->Var()) {
        // skip control var
        continue;
      }
338 339 340 341
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
342
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
343 344 345 346 347 348 349 350 351 352 353
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
354 355 356
      }
    }
    for (auto* var : op->outputs) {
357 358 359 360
      if (!var->Var()) {
        // skip control var
        continue;
      }
J
jiangcheng 已提交
361
      if (cluster_internals.count(var)) {
362
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
363
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
364 365 366 367
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
368 369 370 371
      }
    }
  }

372 373
  AddFeedOpAndVar(
      need_feed_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
374
  AddFeedOpAndVar(
375 376 377
      param_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
  AddOutputVar(
      output_vars, cluster, old_op2new_op, old_var2new_var, subgraph.get());
378 379
  // Save lists of input variables, internal variables and output variables
  // of the cluster as attributes of the subgraph for convenience.
380 381 382 383 384 385 386 387 388 389 390 391
  auto collect_names_fn =
      [](const GraphNodeSet& nodes,
         const std::unordered_set<std::string>& ignore_names) {
        auto result = std::make_unique<std::vector<std::string>>();
        for (auto* node : nodes) {
          if (!node->Var() || ignore_names.count(node->Name())) {
            continue;
          }
          result->emplace_back(node->Name());
        }
        return result;
      };
392 393 394 395 396 397 398
  subgraph->Set<std::vector<std::string>>(
      kInternalVars, collect_names_fn(cluster_internals, {}).release());
  subgraph->Set<std::vector<std::string>>(
      kOutputVars, collect_names_fn(cluster_outputs, {}).release());
  // Divide input variables into two parts: one is common and will be used
  // in execution, the other may be empty and it is those variables whose
  // buffer are not needed and only be used in graph symbolization
399 400
  auto no_need_buffer_feeds = std::make_unique<std::unordered_set<std::string>>(
      ExtractNoNeedBufferFeeds(cluster, cluster_inputs));
401 402 403
  subgraph->Set<std::vector<std::string>>(
      kInputVars,
      collect_names_fn(cluster_inputs, *no_need_buffer_feeds).release());
404 405
  subgraph->Set<std::unordered_set<std::string>>(
      kNoNeedBufferFeeds, no_need_buffer_feeds.release());
406 407
  // initialize empty map for kMemOptVarInfoFromMainGraph attribute,
  // it will be filled on the share_mem_opt_info_to_subgraph pass
408
  subgraph->GetOrInit<Name2VarInfoMap>(kMemOptVarInfoFromMainGraph);
409
  return subgraph;
J
jiangcheng 已提交
410 411 412 413
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
414 415 416
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
417
// out-graph should not using this node at all.
418 419
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
420 421 422
void AnalyseClusterVariables(
    const GraphNodeSet& cluster,
    const std::unordered_set<std::string>& deny_var_set,
423 424
    GraphNodeSet* cluster_inputs,
    GraphNodeSet* cluster_outputs,
425
    GraphNodeSet* cluster_internals) {
J
jiangcheng 已提交
426 427
  // collecting all input and output of op
  for (auto* op_node : cluster) {
428
    const auto& op_name = op_node->Name();
J
jiangcheng 已提交
429
    for (auto* input_var_node : op_node->inputs) {
430 431 432 433
      if (!deny_var_set.count(input_var_node->Name())) {
        // ignore deny var node
        cluster_inputs->insert(input_var_node);
      }
J
jiangcheng 已提交
434 435
    }
    for (auto* output_var_node : op_node->outputs) {
436 437 438
      if (!deny_var_set.count(output_var_node->Name())) {
        cluster_outputs->insert(output_var_node);
      }
J
jiangcheng 已提交
439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

466
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
467 468
                     const GraphNodeSet& cluster_outputs,
                     Node* cinn_op_node) {
469 470 471 472 473 474 475 476 477 478 479 480 481 482
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
483
                      int64_t compilation_key,
484 485
                      const std::unordered_set<std::string>& deny_var_set,
                      Graph* graph) {
486 487 488
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
489

490 491
  const auto& subgraph =
      CinnCompiler::GetInstance()->FindGraph(compilation_key);
492
  const auto& no_need_buffer_feeds =
493 494
      subgraph.Get<std::unordered_set<std::string>>(kNoNeedBufferFeeds);

495 496 497 498 499 500 501
  cinn_op_desc.SetInput(operators::kX,
                        subgraph.Get<std::vector<std::string>>(kInputVars));
  cinn_op_desc.SetInput(operators::kNoNeedBufferX,
                        std::vector<std::string>(no_need_buffer_feeds.begin(),
                                                 no_need_buffer_feeds.end()));
  cinn_op_desc.SetOutput(operators::kOutputs,
                         subgraph.Get<std::vector<std::string>>(kOutputVars));
502
  cinn_op_desc.SetAttr(operators::kCompilationKey, compilation_key);
503 504 505 506
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
507
  // Add new links from or to the cinn launch op node
508
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
509 510

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
511 512 513 514 515 516
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
517 518 519 520 521 522
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
523 524
}

525
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
526 527
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
528
// Meanwhile, move all links of cluster to the cinn op.
529
void ReplaceSubGraphWithCinnOpNode(
530 531 532 533
    const GraphNodeSet& cluster,
    const GraphNodeSet& cluster_inputs,
    const GraphNodeSet& cluster_outputs,
    const GraphNodeSet& cluster_internals,
534
    int64_t compilation_key,
535 536
    const std::unordered_set<std::string>& deny_var_set,
    Graph* graph) {
537
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
538 539 540 541 542 543
  AddCinnOpToGraph(cluster,
                   cluster_inputs,
                   cluster_outputs,
                   compilation_key,
                   deny_var_set,
                   graph);
544
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
545 546 547
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

S
sneaxiy 已提交
548 549 550 551 552 553 554 555 556
static bool IsInplaceOp(const OpDesc& op_desc) {
  auto inputs = op_desc.InputArgumentNames();
  std::unordered_set<std::string> input_set(inputs.begin(), inputs.end());
  for (auto& name : op_desc.OutputArgumentNames()) {
    if (input_set.count(name) > 0) return true;
  }
  return false;
}

J
jiangcheng 已提交
557 558 559 560
// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
561
void SearchAllSubgraphs(Graph* graph) {
562 563 564
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
  auto teller = [&allow_ops, &deny_ops](const Node* node) {
565
    const auto& node_name = node->Name();
566
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
567
                          node_name) != nullptr;
568 569
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
570 571
    if (!allow_ops.empty()) {
      return registered && allow_ops.count(node_name);
572 573 574
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
575 576
    if (!deny_ops.empty()) {
      return registered && !deny_ops.count(node_name);
577
    }
S
sneaxiy 已提交
578

579 580
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
581 582
    return registered && !kDefaultDenyOps.count(node_name) &&
           (node->IsOp() && !IsInplaceOp(*node->Op()));
J
jiangcheng 已提交
583
  };
584 585
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
586 587 588
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

589 590 591 592 593 594 595 596 597 598
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

599
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
600
  for (const auto& node_vec : clusters) {
601
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
602 603
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

604 605
    auto deny_var_set = GetDenyVarNames(cluster_set);

J
jiangcheng 已提交
606
    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
607 608 609 610 611
    AnalyseClusterVariables(cluster_set,
                            deny_var_set,
                            &cluster_inputs,
                            &cluster_outputs,
                            &cluster_internals);
612 613 614 615 616 617 618

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

619 620
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
621
    auto compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
622
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
623 624
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
625

626
    // Replace the found cluster to a new cinn op node
627 628 629 630 631 632 633
    ReplaceSubGraphWithCinnOpNode(cluster_set,
                                  cluster_inputs,
                                  cluster_outputs,
                                  cluster_internals,
                                  compilation_key,
                                  deny_var_set,
                                  graph);
J
jiangcheng 已提交
634 635
  }
}
636
}  // namespace
J
jiangcheng 已提交
637

638
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
639 640 641 642 643 644

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);