build_cinn_pass.cc 16.4 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_proto_maker.h"
36
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
37 38
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
39

40 41 42
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
43 44 45 46 47 48 49 50 51
namespace paddle {
namespace framework {
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;
52
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
53

54
namespace {
55 56 57 58 59 60 61 62 63 64 65 66 67 68
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
      op_roles.insert(BOOST_GET_CONST(int, n->Op()->GetAttr(attr_name)));
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

84 85
// Deal with subgraph's feed input var node:
// create a new input var node and it's feed op node
86 87 88
void AddFeedOpAndVar(const GraphNodeSet& feed_vars, const GraphNodeSet& cluster,
                     const GraphNodeMap& old_op2new_op,
                     const GraphNodeMap& old_var2new_var, Graph* graph) {
89 90 91 92 93 94 95
  for (auto* old_var : feed_vars) {
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

96 97
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
98
    VLOG(4) << "Add Feed Op before: " << var->Name();
99 100

    // link feed op and feed var
101
    IR_NODE_LINK_TO(op, var);
102 103 104 105

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
106
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
107 108
      }
      // Do not need relink old op or old var here, they will be
109
      // fixed in RemoveSubGraphFromGraph, here we just deal with
110 111 112 113 114 115 116 117
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's parameter var node:
// create a new input var node, it's data will get by scope,
// so it don't need feed op
118 119 120
void AddParamVar(const GraphNodeSet& param_vars, const GraphNodeSet& cluster,
                 const GraphNodeMap& old_op2new_op,
                 const GraphNodeMap& old_var2new_var, Graph* graph) {
121
  for (auto* old_var : param_vars) {
122
    auto* var = old_var2new_var.at(old_var);
123
    VLOG(4) << "Add Param Var Node: " << var->Name();
124 125 126

    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
127
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
128 129 130 131 132 133 134
      }
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
135 136 137
void AddOutputVar(const GraphNodeSet& output_vars, const GraphNodeSet& cluster,
                  const GraphNodeMap& old_op2new_op,
                  const GraphNodeMap& old_var2new_var, Graph* graph) {
138
  for (auto* old_var : output_vars) {
139
    auto* var = old_var2new_var.at(old_var);
140
    VLOG(4) << "Add Output Var Node: " << var->Name();
141 142 143

    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
144
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
145 146 147 148 149
      }
    }
  }
}

J
jiangcheng 已提交
150 151
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
152 153
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
154 155
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
156 157
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
158
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
159

160
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
161
  for (auto* op : cluster) {
162
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
163 164 165
    old_op2new_op[op] = sub_node;
  }

166
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
167
  for (auto* var : cluster_internals) {
168 169 170 171 172
    PADDLE_ENFORCE_NOT_NULL(var->Var(),
                            platform::errors::PreconditionNotMet(
                                "The var desc of the node in cluster_internals "
                                "shouldn't be null."));
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
173 174
    old_var2new_var[var] = sub_node;
  }
175 176 177 178 179 180 181 182 183 184 185 186
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
187

188
  GraphNodeSet need_feed_vars;
189
  std::unordered_set<Node *> param_vars, output_vars;
J
jiangcheng 已提交
190 191 192 193 194
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
195 196 197 198
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
199
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
200 201 202 203 204 205 206 207 208 209 210
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
211 212 213 214
      }
    }
    for (auto* var : op->outputs) {
      if (cluster_internals.count(var)) {
215
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
216
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
217 218 219 220
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
221 222 223 224
      }
    }
  }

225 226 227 228 229 230
  AddFeedOpAndVar(need_feed_vars, cluster, old_op2new_op, old_var2new_var,
                  subgraph.get());
  AddParamVar(param_vars, cluster, old_op2new_op, old_var2new_var,
              subgraph.get());
  AddOutputVar(output_vars, cluster, old_op2new_op, old_var2new_var,
               subgraph.get());
J
jiangcheng 已提交
231

232
  return subgraph;
J
jiangcheng 已提交
233 234 235 236
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
237 238 239
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
240
// out-graph should not using this node at all.
241 242
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
J
jiangcheng 已提交
243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
void AnalyseClusterVariables(const GraphNodeSet& cluster,
                             GraphNodeSet* cluster_inputs,
                             GraphNodeSet* cluster_outputs,
                             GraphNodeSet* cluster_internals) {
  // collecting all input and output of op
  for (auto* op_node : cluster) {
    for (auto* input_var_node : op_node->inputs) {
      cluster_inputs->insert(input_var_node);
    }
    for (auto* output_var_node : op_node->outputs) {
      cluster_outputs->insert(output_var_node);
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
                     const GraphNodeSet& cluster_outputs, Node* cinn_op_node) {
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
                      const std::string& compilation_key, Graph* graph) {
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
301
  std::vector<std::string> input_names;
302 303 304 305 306 307
  std::for_each(cluster_inputs.begin(), cluster_inputs.end(),
                [&input_names](Node* n) {
                  if (n->Var() != nullptr) {
                    input_names.emplace_back(n->Name());
                  }
                });
308
  cinn_op_desc.SetInput("X", input_names);
309
  std::vector<std::string> output_names;
310 311 312 313 314 315
  std::for_each(cluster_outputs.begin(), cluster_outputs.end(),
                [&output_names](Node* n) {
                  if (n->Var() != nullptr) {
                    output_names.emplace_back(n->Name());
                  }
                });
316 317 318 319 320 321 322 323
  cinn_op_desc.SetOutput("Out", output_names);
  cinn_op_desc.SetAttr(kCompilationKey, compilation_key);
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
  // Add new links from or to the the cinn launch op node
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
324 325

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
326 327 328 329 330 331
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
332 333 334 335 336 337
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
338 339
}

340
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
341 342
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
343 344 345 346 347 348 349 350 351 352 353
// Meanwhile, move all links of cluster to the cinn op.
void ReplaceSubGraphWithCinnOpNode(const GraphNodeSet& cluster,
                                   const GraphNodeSet& cluster_inputs,
                                   const GraphNodeSet& cluster_outputs,
                                   const GraphNodeSet& cluster_internals,
                                   const std::string& compilation_key,
                                   Graph* graph) {
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
  AddCinnOpToGraph(cluster, cluster_inputs, cluster_outputs, compilation_key,
                   graph);
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
354 355 356 357 358 359 360
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
361
void SearchAllSubgraphs(Graph* graph) {
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
  auto teller = [&allow_ops, &deny_ops](const Node* node) {
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
                          node->Name()) != nullptr;
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
    if (allow_ops.size()) {
      return registered && allow_ops.count(node->Name());
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
    if (deny_ops.size()) {
      return registered && !deny_ops.count(node->Name());
    }
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
    return registered;
J
jiangcheng 已提交
380
  };
381 382
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
383 384 385
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

386 387 388 389 390 391 392 393 394 395
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

396
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
397
  for (const auto& node_vec : clusters) {
398
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
399 400 401 402 403
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
    AnalyseClusterVariables(cluster_set, &cluster_inputs, &cluster_outputs,
                            &cluster_internals);
404 405 406 407 408 409 410

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

411 412
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
413 414
    std::string compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
415 416
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
417

418 419 420
    // Replace the found cluster to a new cinn op node
    ReplaceSubGraphWithCinnOpNode(cluster_set, cluster_inputs, cluster_outputs,
                                  cluster_internals, compilation_key, graph);
J
jiangcheng 已提交
421 422
  }
}
423
}  // namespace
J
jiangcheng 已提交
424

425
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
426 427 428 429 430 431

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);