build_cinn_pass.cc 23.4 KB
Newer Older
J
jiangcheng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/paddle2cinn/build_cinn_pass.h"

17 18
#include <algorithm>
#include <iterator>
J
jiangcheng 已提交
19
#include <memory>
20
#include <regex>
J
jiangcheng 已提交
21 22 23
#include <string>
#include <unordered_map>
#include <unordered_set>
24
#include <utility>
J
jiangcheng 已提交
25 26
#include <vector>

27 28
#include "cinn/frontend/op_mapper_registry.h"
#include "cinn/frontend/op_mappers/use_op_mappers.h"
29 30
#include "gflags/gflags.h"
#include "glog/logging.h"
J
jiangcheng 已提交
31
#include "paddle/fluid/framework/ir/graph.h"
32
#include "paddle/fluid/framework/ir/graph_pattern_detector.h"
J
jiangcheng 已提交
33 34
#include "paddle/fluid/framework/ir/node.h"
#include "paddle/fluid/framework/ir/subgraph_detector.h"
35
#include "paddle/fluid/framework/op_info.h"
36
#include "paddle/fluid/framework/op_proto_maker.h"
37
#include "paddle/fluid/framework/paddle2cinn/cinn_compiler.h"
38
#include "paddle/fluid/operators/cinn/cinn_launch_op.h"
39 40
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/errors.h"
J
jiangcheng 已提交
41

42 43 44
DECLARE_string(allow_cinn_ops);
DECLARE_string(deny_cinn_ops);

J
jiangcheng 已提交
45 46
namespace paddle {
namespace framework {
47 48 49 50 51

namespace ir {
class MemOptVarInfo;
}  // namespace ir

J
jiangcheng 已提交
52 53 54 55 56 57 58
namespace paddle2cinn {

using framework::ir::Graph;
using framework::ir::Node;

using GraphNodeVec = std::vector<Node*>;
using GraphNodeSet = std::unordered_set<Node*>;
59
using GraphNodeMap = std::unordered_map<Node*, Node*>;
J
jiangcheng 已提交
60

61
namespace {
62 63 64 65
// The delim(`;`) that is used to split the FLAGS_allow_cinn_ops
// & FLAGS_deny_cinn_ops.
constexpr char kDelim[] = ";";

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
const std::unordered_map<std::string, std::unordered_set<std::string>>
    kDenyParamMap = {{"batch_norm", {"ReserveSpace"}},
                     {"batch_norm_grad", {"ReserveSpace"}}};

std::unordered_set<std::string> GetDenyVarNames(const GraphNodeSet& cluster) {
  std::unordered_set<std::string> deny_var_set;

  auto get_debug_info = [](const std::unordered_set<std::string>& var_names) {
    std::string debug_info = "[";
    for (auto& var : var_names) {
      debug_info.append(var);
      debug_info.append(", ");
    }
    debug_info.append("]");
    return debug_info;
  };

  for (auto* op : cluster) {
    if (kDenyParamMap.count(op->Name())) {
      const auto* desc = op->Op();
      PADDLE_ENFORCE_NE(desc, nullptr,
                        platform::errors::PreconditionNotMet(
                            "The Op %s's OpDesc should not be NULL, which has "
                            "a parameter in kDenyParamMap.",
                            op->Name().c_str()));

      auto deny_param_names = kDenyParamMap.at(op->Name());
      VLOG(4) << "We found deny param " << get_debug_info(deny_param_names)
              << " in op [" << op->Name() << "].";

      for (const auto& param_name : deny_param_names) {
        if (desc->Inputs().count(param_name)) {
          const auto& arg_names = desc->Input(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }

        if (desc->HasOutput(param_name)) {
          const auto& arg_names = desc->Output(param_name);
          for (const auto& arg_name : arg_names) {
            deny_var_set.insert(arg_name);
            VLOG(4) << "deny param [" << param_name << "]'s argument name"
                    << " is [" << arg_name << "].";
          }
        }
      }
    }
  }

  VLOG(4) << "All deny var names are " << get_debug_info(deny_var_set);

  return deny_var_set;
}

123 124 125 126 127 128 129 130 131 132
std::unordered_set<std::string> StringSplit(const std::string& str,
                                            const std::string& delim) {
  std::regex reg(delim);
  std::unordered_set<std::string> elems{
      std::sregex_token_iterator(str.begin(), str.end(), reg, -1),
      std::sregex_token_iterator()};
  elems.erase("");
  return elems;
}

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
int ExtractOpRole(const GraphNodeSet& cluster) {
  std::unordered_set<int> op_roles;
  std::string attr_name = OpProtoAndCheckerMaker::OpRoleAttrName();
  for (auto* n : cluster) {
    if (n->Op() && n->Op()->HasAttr(attr_name)) {
      op_roles.insert(BOOST_GET_CONST(int, n->Op()->GetAttr(attr_name)));
    }
  }
  if (op_roles.size() == 1U) {
    return *(op_roles.begin());
  } else {
    return static_cast<int>(OpRole::kNotSpecified);
  }
}

148 149
// Deal with subgraph's feed input var node:
// create a new input var node and it's feed op node
150 151 152
void AddFeedOpAndVar(const GraphNodeSet& feed_vars, const GraphNodeSet& cluster,
                     const GraphNodeMap& old_op2new_op,
                     const GraphNodeMap& old_var2new_var, Graph* graph) {
153 154 155 156 157 158 159
  for (auto* old_var : feed_vars) {
    // create feed op
    OpDesc desc;
    desc.SetType("feed");
    desc.SetOutput("Out", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

160 161
    // get new feed var node
    auto* var = old_var2new_var.at(old_var);
162
    VLOG(4) << "Add Feed Op before: " << var->Name();
163 164

    // link feed op and feed var
165
    IR_NODE_LINK_TO(op, var);
166 167 168 169

    // link feed var to cluster op
    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
170
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
171 172
      }
      // Do not need relink old op or old var here, they will be
173
      // fixed in RemoveSubGraphFromGraph, here we just deal with
174 175 176 177 178 179 180 181
      // new subgraph's node.
    }
  }
}

// Deal with subgraph's parameter var node:
// create a new input var node, it's data will get by scope,
// so it don't need feed op
182 183 184
void AddParamVar(const GraphNodeSet& param_vars, const GraphNodeSet& cluster,
                 const GraphNodeMap& old_op2new_op,
                 const GraphNodeMap& old_var2new_var, Graph* graph) {
185
  for (auto* old_var : param_vars) {
186
    auto* var = old_var2new_var.at(old_var);
187
    VLOG(4) << "Add Param Var Node: " << var->Name();
188 189 190

    for (auto* old_op : old_var->outputs) {
      if (cluster.count(old_op)) {
191
        IR_NODE_LINK_TO(var, old_op2new_op.at(old_op));
192 193 194 195 196 197 198
      }
    }
  }
}

// Deal with subgraph's outputs var node:
// create a new output var node and it's fetch op
199 200 201
void AddOutputVar(const GraphNodeSet& output_vars, const GraphNodeSet& cluster,
                  const GraphNodeMap& old_op2new_op,
                  const GraphNodeMap& old_var2new_var, Graph* graph) {
202
  for (auto* old_var : output_vars) {
203 204 205 206 207 208
    // create fetch op
    OpDesc desc;
    desc.SetType("fetch");
    desc.SetInput("X", {old_var->Name()});
    auto op = graph->CreateOpNode(&desc);

209
    auto* var = old_var2new_var.at(old_var);
210
    VLOG(4) << "Add Output Var Node: " << var->Name();
211

212 213 214
    // link fetch op and fetch var
    IR_NODE_LINK_TO(var, op);

215 216
    for (auto* old_op : old_var->inputs) {
      if (cluster.count(old_op)) {
217
        IR_NODE_LINK_TO(old_op2new_op.at(old_op), var);
218 219 220 221 222
      }
    }
  }
}

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
std::unordered_set<std::string> ExtractNoNeedBufferFeeds(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs) {
  // 1. Find op with NoNeedBufferVarsInferer defined and collect its input nodes
  std::unordered_map<Node*, GraphNodeSet> op_node2no_need_buffer_nodes;
  for (auto* op_node : cluster) {
    auto& inferer =
        OpInfoMap::Instance().Get(op_node->Name()).NoNeedBufferVarsInferer();
    if (!inferer) {
      continue;
    }
    auto* op_desc = op_node->Op();
    PADDLE_ENFORCE_NOT_NULL(
        op_desc, platform::errors::PreconditionNotMet(
                     "The op desc of node in cluster shouldn't be null."));
    auto inferred_params =
        inferer(op_desc->Inputs(), op_desc->Inputs(), op_desc->GetAttrMap());
    std::unordered_set<std::string> inferred_args;
    std::for_each(inferred_params.begin(), inferred_params.end(),
                  [&op_desc, &inferred_args](const std::string& param) {
                    const auto& args = op_desc->Input(param);
                    inferred_args.insert(args.begin(), args.end());
                  });
    auto& no_need_buffer_nodes = op_node2no_need_buffer_nodes[op_node];
    for (auto* input_node : op_node->inputs) {
      if (input_node->Var() && inferred_args.count(input_node->Name())) {
        VLOG(4) << "Input node(" << input_node->Name() << ") of op("
                << op_node->Name() << ") is no_need_buffer";
        no_need_buffer_nodes.insert(input_node);
      }
    }
  }

  // 2. Extract no_need_buffer nodes from cluster_inputs by checking
  // all of their outputs are op nodes with NoNeedBufferVarsInferer
  // and they used as no_need_buffer inputs.
  auto check_all_used_as_no_need_buffer_fn =
      [&op_node2no_need_buffer_nodes](Node* var_node) -> bool {
    for (auto* output_node : var_node->outputs) {
      auto it = op_node2no_need_buffer_nodes.find(output_node);
      if (it == op_node2no_need_buffer_nodes.end()) {
        VLOG(4) << "Var node(" << var_node->Name() << ")'s output node("
                << output_node->Name()
                << ") doesn't have NoNeedBufferVarsInferer";
        return false;
      }
      if (it->second.count(var_node) == 0) {
        VLOG(4) << "Var node("
                << ") is not used as no_need_buffer inputs";
        return false;
      }
    }
    return true;
  };
  std::unordered_set<std::string> result;
  for (const auto& op2inputs_pair : op_node2no_need_buffer_nodes) {
    for (auto* input_node : op2inputs_pair.second) {
      if (cluster_inputs.count(input_node) &&
          check_all_used_as_no_need_buffer_fn(input_node)) {
        VLOG(4) << "Input node(" << input_node->Name()
                << ") is declared as no_need_buffer cluster_inputs";
        result.insert(input_node->Name());
      }
    }
  }
  return result;
}

J
jiangcheng 已提交
290 291
// Create new subgraph with and op nodes are cluster nodes, and all
// var node are from internal nodes
292 293
std::unique_ptr<Graph> CreateNewSubGraph(const GraphNodeSet& cluster,
                                         const GraphNodeSet& cluster_internals,
294 295
                                         const GraphNodeSet& cluster_inputs,
                                         const GraphNodeSet& cluster_outputs) {
J
jiangcheng 已提交
296 297
  // Graph's constructor must has one parameter, and in our code,
  // the ProgramDesc is useless, so here we pass a temporary object.
298
  auto subgraph = std::make_unique<Graph>(framework::ProgramDesc());
J
jiangcheng 已提交
299

300
  GraphNodeMap old_op2new_op;
J
jiangcheng 已提交
301
  for (auto* op : cluster) {
302
    auto sub_node = subgraph->CreateOpNode(op->Op());
J
jiangcheng 已提交
303 304 305
    old_op2new_op[op] = sub_node;
  }

306
  GraphNodeMap old_var2new_var;
J
jiangcheng 已提交
307
  for (auto* var : cluster_internals) {
308 309 310 311 312
    PADDLE_ENFORCE_NOT_NULL(var->Var(),
                            platform::errors::PreconditionNotMet(
                                "The var desc of the node in cluster_internals "
                                "shouldn't be null."));
    auto* sub_node = subgraph->CreateVarNode(var->Var());
J
jiangcheng 已提交
313 314
    old_var2new_var[var] = sub_node;
  }
315 316 317 318 319 320 321 322 323 324 325 326
  for (auto* var : cluster_inputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
  for (auto* var : cluster_outputs) {
    if (var->Var()) {
      auto* sub_node = subgraph->CreateVarNode(var->Var());
      old_var2new_var[var] = sub_node;
    }
  }
J
jiangcheng 已提交
327

328
  GraphNodeSet need_feed_vars;
329
  std::unordered_set<Node *> param_vars, output_vars;
J
jiangcheng 已提交
330 331 332 333 334
  // the subgraph is independently, so here we only need link
  // to the node in new subgraph, and discard the link to
  // out-graph.
  for (auto* op : cluster) {
    for (auto* var : op->inputs) {
335 336 337 338
      // one output var maybe an input of the cluster
      if (cluster_internals.count(var) ||
          (cluster_outputs.count(var) && old_var2new_var.count(var))) {
        IR_NODE_LINK_TO(old_var2new_var.at(var), old_op2new_op.at(op));
339
      } else if (cluster_inputs.count(var) && var->Var() != nullptr) {
340 341 342 343 344 345 346 347 348 349 350
        if (var->Var()->IsParameter()) {
          // Parameters have been preserved in scope, compared to feed var,
          // param just need add new var and don't need add feed op.
          // The var is used for check whether we need preserve the tensor
          // when transform paddle scope to CINN scope.
          param_vars.insert(var);
        } else {
          // When the var is subgraph input and the var is not parameter,
          // we need add a new feed op to feed the var.
          need_feed_vars.insert(var);
        }
J
jiangcheng 已提交
351 352 353 354
      }
    }
    for (auto* var : op->outputs) {
      if (cluster_internals.count(var)) {
355
        IR_NODE_LINK_TO(old_op2new_op.at(op), old_var2new_var.at(var));
356
      } else if (cluster_outputs.count(var) && var->Var() != nullptr) {
357 358 359 360
        // Create new output var node to guarantee the independency of
        // subgraph. In other words, the subgraph has no connection with
        // other graph, even the input graph.
        output_vars.insert(var);
J
jiangcheng 已提交
361 362 363 364
      }
    }
  }

365 366 367 368 369 370
  AddFeedOpAndVar(need_feed_vars, cluster, old_op2new_op, old_var2new_var,
                  subgraph.get());
  AddParamVar(param_vars, cluster, old_op2new_op, old_var2new_var,
              subgraph.get());
  AddOutputVar(output_vars, cluster, old_op2new_op, old_var2new_var,
               subgraph.get());
371 372 373 374 375 376 377
  // Save lists of input variables, internal variables and output variables
  // of the cluster as attributes of the subgraph for convenience.
  auto collect_names_fn = [](
      const GraphNodeSet& nodes,
      const std::unordered_set<std::string>& ignore_names) {
    auto result = std::make_unique<std::vector<std::string>>();
    for (auto* node : nodes) {
378
      if (!node->Var() || ignore_names.count(node->Name())) {
379 380 381 382 383 384 385 386 387 388 389 390 391
        continue;
      }
      result->emplace_back(node->Name());
    }
    return result;
  };
  subgraph->Set<std::vector<std::string>>(
      kInternalVars, collect_names_fn(cluster_internals, {}).release());
  subgraph->Set<std::vector<std::string>>(
      kOutputVars, collect_names_fn(cluster_outputs, {}).release());
  // Divide input variables into two parts: one is common and will be used
  // in execution, the other may be empty and it is those variables whose
  // buffer are not needed and only be used in graph symbolization
392 393
  auto no_need_buffer_feeds = std::make_unique<std::unordered_set<std::string>>(
      ExtractNoNeedBufferFeeds(cluster, cluster_inputs));
394 395 396
  subgraph->Set<std::vector<std::string>>(
      kInputVars,
      collect_names_fn(cluster_inputs, *no_need_buffer_feeds).release());
397 398
  subgraph->Set<std::unordered_set<std::string>>(
      kNoNeedBufferFeeds, no_need_buffer_feeds.release());
399 400 401 402 403
  // initialize empty map for kMemOptVarInfoFromMainGraph attribute,
  // it will be filled on the share_mem_opt_info_to_subgraph pass
  subgraph->GetOrInit<std::unordered_map<
      std::string, std::shared_ptr<framework::ir::MemOptVarInfo>>>(
      kMemOptVarInfoFromMainGraph);
404
  return subgraph;
J
jiangcheng 已提交
405 406 407 408
}

// This interface is used to classify all variables involved in a cluster into
// three types: inputs, outputs, and internals.
409 410 411
// The input node is some subgraph op's input but not any subgraph op's output.
// The output node is some subgraph op's output and some out-graph op's input.
// Specially, the internal node is a node that only used by subgraph, and
J
jiangcheng 已提交
412
// out-graph should not using this node at all.
413 414
// cluster_inputs & cluster_outputs & cluster_internals == NULL
// cluster_outputs | cluster_internals == all graph op's outputs node
415 416 417 418 419
void AnalyseClusterVariables(
    const GraphNodeSet& cluster,
    const std::unordered_set<std::string>& deny_var_set,
    GraphNodeSet* cluster_inputs, GraphNodeSet* cluster_outputs,
    GraphNodeSet* cluster_internals) {
J
jiangcheng 已提交
420 421
  // collecting all input and output of op
  for (auto* op_node : cluster) {
422
    const auto& op_name = op_node->Name();
J
jiangcheng 已提交
423
    for (auto* input_var_node : op_node->inputs) {
424 425 426 427
      if (!deny_var_set.count(input_var_node->Name())) {
        // ignore deny var node
        cluster_inputs->insert(input_var_node);
      }
J
jiangcheng 已提交
428 429
    }
    for (auto* output_var_node : op_node->outputs) {
430 431 432
      if (!deny_var_set.count(output_var_node->Name())) {
        cluster_outputs->insert(output_var_node);
      }
J
jiangcheng 已提交
433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459
    }
  }
  // remove output node from cluster_inputs,
  // and add cluster_internals node
  for (auto* var_node : *cluster_outputs) {
    if (cluster_inputs->count(var_node) > 0) {
      // if a input node also exists in output list, remove
      cluster_inputs->erase(var_node);

      // the internal node is must an output node of sub-graph,
      // but not any input node of out-graph.
      bool is_only_used_internal = true;
      for (auto* next_op_node : var_node->outputs) {
        is_only_used_internal &= (cluster.count(next_op_node) > 0);
      }
      if (is_only_used_internal) {
        cluster_internals->insert(var_node);
      }
    }
  }

  // if a output node also exists in internal list, remove.
  for (auto* var_node : *cluster_internals) {
    cluster_outputs->erase(var_node);
  }
}

460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475
void AddLinkToCinnOp(const GraphNodeSet& cluster_inputs,
                     const GraphNodeSet& cluster_outputs, Node* cinn_op_node) {
  // add new link from cluster_inputs to cinn_op_node
  for (auto* var_node : cluster_inputs) {
    IR_NODE_LINK_TO(var_node, cinn_op_node);
  }

  // add new link from cinn_op_node to cluster_outputs
  for (auto* var_node : cluster_outputs) {
    IR_NODE_LINK_TO(cinn_op_node, var_node);
  }
}

void AddCinnOpToGraph(const GraphNodeSet& cluster,
                      const GraphNodeSet& cluster_inputs,
                      const GraphNodeSet& cluster_outputs,
476 477 478
                      const std::string& compilation_key,
                      const std::unordered_set<std::string>& deny_var_set,
                      Graph* graph) {
479 480 481
  // Add the cinn launch op
  framework::OpDesc cinn_op_desc;
  cinn_op_desc.SetType(kCinnLaunchOp);
482

483 484
  const auto& subgraph =
      CinnCompiler::GetInstance()->FindGraph(compilation_key);
485
  const auto& no_need_buffer_feeds =
486 487
      subgraph.Get<std::unordered_set<std::string>>(kNoNeedBufferFeeds);

488 489 490 491 492 493 494
  cinn_op_desc.SetInput(operators::kX,
                        subgraph.Get<std::vector<std::string>>(kInputVars));
  cinn_op_desc.SetInput(operators::kNoNeedBufferX,
                        std::vector<std::string>(no_need_buffer_feeds.begin(),
                                                 no_need_buffer_feeds.end()));
  cinn_op_desc.SetOutput(operators::kOutputs,
                         subgraph.Get<std::vector<std::string>>(kOutputVars));
495
  cinn_op_desc.SetAttr(operators::kCompilationKey, compilation_key);
496 497 498 499 500 501
  cinn_op_desc.SetAttr(OpProtoAndCheckerMaker::OpRoleAttrName(),
                       ExtractOpRole(cluster));
  cinn_op_desc.Flush();
  auto* cinn_op_node = graph->CreateOpNode(&cinn_op_desc);
  // Add new links from or to the the cinn launch op node
  AddLinkToCinnOp(cluster_inputs, cluster_outputs, cinn_op_node);
502 503

  VLOG(4) << "Add op [" << kCinnLaunchOp << "] into graph.";
J
jiangcheng 已提交
504 505 506 507 508 509
}

// Removing cluster node and internals node from Graph
void RemoveSubGraphFromGraph(const GraphNodeSet& cluster,
                             const GraphNodeSet& cluster_internals,
                             Graph* graph) {
510 511 512 513 514 515
  const std::unordered_set<const Node*> const_cluster{cluster.cbegin(),
                                                      cluster.cend()};
  const std::unordered_set<const Node*> const_internals{
      cluster_internals.cbegin(), cluster_internals.cend()};
  ir::GraphSafeRemoveNodes(graph, const_cluster);
  ir::GraphSafeRemoveNodes(graph, const_internals);
J
jiangcheng 已提交
516 517
}

518
// Replacing Cinn subgraph to a cinn op node, whose op_type is
J
jiangcheng 已提交
519 520
// kCinnLaunchOp, and inputs ares cluster_inputs and outputs are
// cluster_outputs.
521
// Meanwhile, move all links of cluster to the cinn op.
522 523 524 525 526
void ReplaceSubGraphWithCinnOpNode(
    const GraphNodeSet& cluster, const GraphNodeSet& cluster_inputs,
    const GraphNodeSet& cluster_outputs, const GraphNodeSet& cluster_internals,
    const std::string& compilation_key,
    const std::unordered_set<std::string>& deny_var_set, Graph* graph) {
527 528
  // Add the cinn op node whose name is "kCinnLaunchOp" into graph
  AddCinnOpToGraph(cluster, cluster_inputs, cluster_outputs, compilation_key,
529
                   deny_var_set, graph);
530
  // Remove the cinn subgraph from graph
J
jiangcheng 已提交
531 532 533 534 535 536 537
  RemoveSubGraphFromGraph(cluster, cluster_internals, graph);
}

// Search all subgraphs which all op node supported by CINN,
// Here we using SubgraphDetector to detecte the subgraph that
// all of op node supported by CINN. We using OpMapperRegistry
// to check whether the op node supported by CINN.
538
void SearchAllSubgraphs(Graph* graph) {
539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556
  auto allow_ops = StringSplit(FLAGS_allow_cinn_ops, kDelim);
  auto deny_ops = StringSplit(FLAGS_deny_cinn_ops, kDelim);
  auto teller = [&allow_ops, &deny_ops](const Node* node) {
    bool registered = ::cinn::frontend::OpMapperRegistry::Global()->Find(
                          node->Name()) != nullptr;
    // if the op type is registered in CINN and allow_ops is not empty, return
    // true only when it is in allow_ops
    if (allow_ops.size()) {
      return registered && allow_ops.count(node->Name());
    }
    // if the op type is registered in CINN and deny_ops is not empty, return
    // true only when it is not in deny_ops
    if (deny_ops.size()) {
      return registered && !deny_ops.count(node->Name());
    }
    // if the user doesn't set FLAGS_allow_cinn_ops and FLAGS_deny_cinn_ops,
    // return true only when it is registered in CINN
    return registered;
J
jiangcheng 已提交
557
  };
558 559
  VLOG(4) << "The allowed Cinn Ops: " << FLAGS_allow_cinn_ops;
  VLOG(4) << "The denied Cinn Ops: " << FLAGS_deny_cinn_ops;
J
jiangcheng 已提交
560 561 562
  std::vector<GraphNodeVec> clusters =
      framework::ir::SubgraphDetector(graph, teller)();

563 564 565 566 567 568 569 570 571 572
  auto cluster_debug_info = [](const GraphNodeSet& cluster) {
    std::string res = "(";
    for (auto* node : cluster) {
      res.append(node->Name());
      res.append(", ");
    }
    res.append(")");
    return res;
  };

573
  auto* cinn_compiler = CinnCompiler::GetInstance();
J
jiangcheng 已提交
574
  for (const auto& node_vec : clusters) {
575
    // Classify var node to inputs, outputs, and internals.
J
jiangcheng 已提交
576 577
    GraphNodeSet cluster_set(node_vec.begin(), node_vec.end());

578 579
    auto deny_var_set = GetDenyVarNames(cluster_set);

J
jiangcheng 已提交
580
    GraphNodeSet cluster_inputs, cluster_outputs, cluster_internals;
581 582
    AnalyseClusterVariables(cluster_set, deny_var_set, &cluster_inputs,
                            &cluster_outputs, &cluster_internals);
583 584 585 586 587 588 589

    VLOG(4) << "Cluster Ops: " << cluster_debug_info(cluster_set);
    VLOG(4) << "Cluster input vars: " << cluster_debug_info(cluster_inputs);
    VLOG(4) << "Cluster output vars: " << cluster_debug_info(cluster_outputs);
    VLOG(4) << "Cluster internal vars: "
            << cluster_debug_info(cluster_internals);

590 591
    // Create a new subgraph according to the found cluster and
    // save it in CinnCompiler
592 593
    std::string compilation_key = cinn_compiler->AddGraph(CreateNewSubGraph(
        cluster_set, cluster_internals, cluster_inputs, cluster_outputs));
594 595
    VLOG(4) << "Compilation Key:\n"
            << cinn_compiler->ReadableKey(compilation_key);
596

597 598
    // Replace the found cluster to a new cinn op node
    ReplaceSubGraphWithCinnOpNode(cluster_set, cluster_inputs, cluster_outputs,
599 600
                                  cluster_internals, compilation_key,
                                  deny_var_set, graph);
J
jiangcheng 已提交
601 602
  }
}
603
}  // namespace
J
jiangcheng 已提交
604

605
void BuildCinnPass::ApplyImpl(Graph* graph) const { SearchAllSubgraphs(graph); }
J
jiangcheng 已提交
606 607 608 609 610 611

}  // namespace paddle2cinn
}  // namespace framework
}  // namespace paddle

REGISTER_PASS(build_cinn_pass, paddle::framework::paddle2cinn::BuildCinnPass);