launch.py 26.5 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67
from sys import version
import subprocess
import os
import time
import six
import copy
68
import pathlib
69
import argparse
70 71 72
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
73
from paddle.distributed.fleet import launch_utils
74

75
# TODO(danleifeng): Don't import * from a module
76
from paddle.distributed.fleet.launch_utils import *
77 78
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
79

K
kuizhiqing 已提交
80
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
81

82 83
__all__ = []

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
101
    base_group = parser.add_argument_group("Base Parameters")
102

103 104
    base_group.add_argument(
        "--log_dir",
105
        type=str,
106
        default="log",
G
Guoxia Wang 已提交
107
        help="The path for each process's log. Default --log_dir=log/")
X
xiongkun 已提交
108 109 110
    base_group.add_argument(
        "--backend",
        type=str,
K
kuizhiqing 已提交
111 112 113
        default=os.environ.get('PADDLE_DISTRI_BACKEND', 'auto'),
        help="Specifize the backend, can be gloo|nccl|bkcl|auto|hccl|heter. "
        "Default value is auto which perfers nccl or bkcl.")
114 115 116 117 118 119 120 121
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

122 123 124
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
125
        default=None,
126 127
        help="run mode of job, can be:collective/ps/ps-heter")

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
148

K
kuizhiqing 已提交
149 150 151 152 153 154 155 156 157 158
    if fluid.core.is_compiled_with_npu():
        base_group.add_argument(
            "--npus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--npus=\"0,1,2,3\" will launch four training processes each bound to one npu."
        )
        base_group.add_argument("--selected_npus", dest="npus")

159
    base_group.add_argument(
160 161 162 163 164 165 166
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

167 168 169 170 171 172 173 174 175 176
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
    collective_group.add_argument(
        "--rank_mapping_file",
        type=argparse.FileType('r'),
        default=sys.stdin,
        help="This rank mapping information in json format is used specifically "
        "for lazy launch for auto parallel. Some of the ranks in each node "
        "may not be used, and the indices of rank should be kept the same "
        "as the indices of sub-task splited by auto parallel. "
        " { "
        "   \"ip_ranks\": [ "
        "     { "
        "       \"ip\": \"127.0.0.1\", "
        "       \"ranks\": [0,1] "
        "     }, "
        "     { "
        "       \"ip\": \"127.0.0.2\", "
        "       \"ranks\": [2,3,4] "
        "     } "
        "   ] "
        " } ")
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
        help="Set true to enable the lazy launch for auto-parallel scenario.")
202 203 204 205 206 207 208 209 210 211 212

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
213
        help="User defined heter workers in each stage ip1:port1;ip2:port2")
214 215 216 217
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
218
        help="User defined heter devices in each stage cpu;gpu;cpu")
219 220 221 222

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
223 224 225
        "--heter_worker_num",
        type=str,
        help="number of heter_workers in each stage 1;2;3")
226
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
227

228 229 230 231
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
    elastic_group.add_argument(
        "--elastic_server", type=str, help="etcd server host:port")
232 233 234
    elastic_group.add_argument(
        "--elastic_pre_hook", type=str, help="elastic pre_hook shell cmd")

235 236 237 238 239 240 241 242
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
    elastic_group.add_argument(
        "--host", type=str, help="bind host, default to POD_IP env")
    elastic_group.add_argument(
        "--force", type=bool, default=False, help="update np force")

243 244 245
    return parser.parse_args()


246
def get_cluster_from_args(args, device_mode, devices_per_proc):
247 248 249 250
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
251 252 253 254
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
255

256
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
257
        % (node_ip, node_ips)
258 259
    node_rank = node_ips.index(node_ip)

260
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
261 262 263 264 265
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
266
        free_ports = find_free_ports(len(devices_per_proc))
267 268 269 270 271
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
272
            start_port = int(os.environ.get('FLAGS_START_PORT'))
273

274 275 276
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
277

278 279 280
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
281 282
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
283 284


X
xiongkun 已提交
285 286 287 288 289 290 291 292 293 294 295 296
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
            % args.ips)
    if args.run_mode:
        assert args.run_mode == 'cpuonly', "CPUONLY launch only support run mode is CPUONLY"
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


297
def get_cluster_info(args):
K
kuizhiqing 已提交
298
    # parse arguments, used for cloud-single-machine and local
X
xiongkun 已提交
299
    if args.backend == 'gloo': cpuonly_check(args)
K
kuizhiqing 已提交
300 301 302 303 304 305 306 307 308 309 310
    (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(args)
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
311 312 313
    # lazy launch for auto-parallel
    if args.enable_auto_mapping == True:
        cluster, pod = get_mapped_cluster_from_args(args, device_mode)
K
kuizhiqing 已提交
314 315 316 317 318
    elif cloud_utils.use_paddlecloud() and trainers_num != 1:
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port)
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
319
        # for ascend
K
kuizhiqing 已提交
320 321 322 323 324 325 326 327 328
        cluster, pod = ascend_utils.get_cloud_cluster(
            rank_table_file=os.getenv("RANK_TABLE_FILE", None),
            device_mode=device_mode,
            start_port=start_port)
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
        logger.debug("get cluster from args:{}".format(cluster))
329 330 331
    return cluster, pod

def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
332 333 334 335
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
336
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
337
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
338 339 340 341 342 343 344
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
345 346 347 348 349 350 351 352 353 354 355

    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
        log_dir=args.log_dir,
        envs=global_envs)

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
356

K
kuizhiqing 已提交
357
    while True:
K
kuizhiqing 已提交
358 359
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
360

K
kuizhiqing 已提交
361 362 363 364
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
365

K
kuizhiqing 已提交
366 367 368 369 370 371
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
372

373 374
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
375

376

377 378 379 380 381 382 383
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
384 385 386 387 388
    #elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
389 390 391 392 393 394

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


395 396 397 398 399 400 401 402 403 404 405 406
def infer_backend(args):
    if args.backend != "auto": return
    if fluid.core.is_compiled_with_cuda():
        args.backend = 'nccl'
    elif fluid.core.is_compiled_with_npu():
        args.backend = 'unknown'
    elif fluid.core.is_compiled_with_xpu():
        args.backend = 'bkcl'
    else:
        args.backend = 'gloo'


407
def which_distributed_mode(args):
408
    infer_backend(args)  # modify the args.backend
409 410 411 412 413 414 415 416 417 418
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

419
    ps_args = [
420
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
421
        '--workers', '--heter_workers', '--heter_devices', '--http_port'
422
    ]
423
    collective_args = ['--ips']
424

425
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
426 427 428 429 430 431 432 433

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
434 435 436 437 438 439

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

440
    if fluid.core.is_compiled_with_cuda():
441
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
442 443
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
444
    elif fluid.core.is_compiled_with_xpu():
445
        accelerators = fluid.core.get_xpu_device_count()
446
    else:
447
        accelerators = 0
448

449 450
    if len(has_ps_args) > 0:
        logger.info(
451 452
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
            format(has_ps_args, accelerators))
453 454 455 456 457
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
458
    elif len(has_collective_args) > 0:
459 460
        logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
                    format(has_collective_args, accelerators))
461
        return DistributeMode.COLLECTIVE
462
    else:
463 464
        if not fluid.core.is_compiled_with_cuda(
        ) and not fluid.core.is_compiled_with_xpu():
X
xiongkun 已提交
465 466
            if args.servers:
                logger.warning(
K
kuizhiqing 已提交
467 468
                    "Not found distinct arguments and not compiled with cuda or xpu or npu. "
                    "But found args.servers not empty, default use ps mode")
X
xiongkun 已提交
469 470 471
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
472 473
        else:
            logger.warning(
K
kuizhiqing 已提交
474 475
                "Not found distinct arguments and compiled with cuda or xpu or npu. "
                "Default use collective mode")
476
            return DistributeMode.COLLECTIVE
477 478 479


def launch():
G
Guoxia Wang 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
    
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
                             training_script ...    


    Base Parameters:
G
Guoxia Wang 已提交
496
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
497

G
Guoxia Wang 已提交
498
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
499

G
Guoxia Wang 已提交
500
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
501

G
Guoxia Wang 已提交
502
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
503 504 505

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
        
G
Guoxia Wang 已提交
506
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
G
Guoxia Wang 已提交
507 508 509
        
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

G
Guoxia Wang 已提交
510
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``traing.py``
G
Guoxia Wang 已提交
511

G
Guoxia Wang 已提交
512
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
513 514

    Collective Parameters:
G
Guoxia Wang 已提交
515
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
516 517

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
518
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
519

G
Guoxia Wang 已提交
520
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
521

522
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
523 524 525 526 527

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

528 529 530
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
        
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
531 532 533 534

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
535
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
536

G
Guoxia Wang 已提交
537
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
538

G
Guoxia Wang 已提交
539
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
540 541 542 543 544 545 546 547 548 549 550

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
            
G
Guoxia Wang 已提交
551
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
552 553 554 555 556 557 558

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
        
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
559 560 561
            # The parameters of --gpus and --ips must be consistent in each node.

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 
G
Guoxia Wang 已提交
562 563 564 565 566 567 568 569 570 571 572 573

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
        
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
574
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
G
Guoxia Wang 已提交
575 576 577 578 579 580 581
            
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
        
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
582
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
583 584 585 586 587 588 589 590 591 592 593 594 595

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
596
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
G
Guoxia Wang 已提交
597 598 599 600 601 602 603 604
            
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
            
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
605
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
621
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
G
Guoxia Wang 已提交
622 623 624 625 626 627 628 629
            
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
            
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
630
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
        
    """

650 651 652 653
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
654
    if args.backend == 'auto':
655 656
        distribute_mode = which_distributed_mode(
            args)  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
657 658 659 660 661
    else:
        assert args.run_mode == 'collective' or args.run_mode == None, "When backend is not 'auto', run mode must be collective"
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

K
kuizhiqing 已提交
662
    #assert args.backend in ['gloo', 'nccl', 'bkcl', 'heter', 'unknown']
663

X
xiongkun 已提交
664 665
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
666

667 668 669
    block_windows_and_macos(
        args.backend)  # raise error when using gloo on windows or macos

K
kuizhiqing 已提交
670 671 672
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
673

K
kuizhiqing 已提交
674 675
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
676
    else:
K
kuizhiqing 已提交
677
        launch_ps(args, distribute_mode)
678 679 680 681


if __name__ == "__main__":
    launch()