launch.py 12.8 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67 68 69 70
from sys import version
import subprocess
import os
import time
import six
import copy
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
71
from paddle.distributed.fleet import launch_utils
72

73
# TODO(danleifeng): Don't import * from a module
74 75
from paddle.distributed.fleet.launch_utils import *
import paddle.distributed.fleet.cloud_utils as cloud_utils
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
94
    base_group = parser.add_argument_group("Base Parameters")
95

96 97
    base_group.add_argument(
        "--log_dir",
98
        type=str,
99 100 101 102
        default="log",
        help="The path for each process's log.If it's not set, the log will printed to default pipe."
    )

103 104 105 106 107 108 109 110
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
131

132
    base_group.add_argument(
133 134 135 136 137 138 139
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
        help="User defined heter workers ip:port")

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
        "--heter_worker_num", type=int, help="number of heter_workers")
167
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
168

169 170 171
    return parser.parse_args()


172
def get_cluster_from_args(args, device_mode, devices_per_proc):
173 174 175 176 177 178
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        _, node_ip = get_host_name_ip()

179
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
180
        % (node_ip, node_ips)
181 182
    node_rank = node_ips.index(node_ip)

183
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
184 185 186 187 188
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
189
        free_ports = find_free_ports(len(devices_per_proc))
190 191 192 193 194
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
195
            start_port = int(os.environ.get('FLAGS_START_PORT'))
196

197 198 199
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
200

201 202 203
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
204 205
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
206 207 208 209


def launch_collective(args):
    # parse arguments, used for cloud-single-machine and local
210
    (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(args)
211
    trainers_num = cloud_utils.get_trainers_num()
212 213
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))
214 215 216 217

    cluster = None
    pod = None

218 219 220
    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
221
    if cloud_utils.use_paddlecloud() and trainers_num != 1:
222 223
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port)
224
        logger.debug("get cluster from cloud:{}".format(cluster))
225 226
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
227 228
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
229
        logger.debug("get cluster from args:{}".format(cluster))
230

231 232 233
    global_envs = copy.copy(os.environ.copy())
    gloo_rendezvous_dir = tempfile.mkdtemp()
    # add gloo env
L
lilong12 已提交
234
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
235
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
236 237
    global_envs["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir

238 239 240 241 242
    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
243 244
        log_dir=args.log_dir,
        envs=global_envs)
245 246 247 248 249

    while True:
        alive = watch_local_trainers(procs, cluster.trainers_nranks())

        if not alive:
250 251
            logger.info("Local processes completed.")
            logger.debug("POD info:{}".format(pod))
252 253 254 255
            break

        time.sleep(3)

256 257 258
    if os.path.exists(gloo_rendezvous_dir):
        shutil.rmtree(gloo_rendezvous_dir)

259

260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
    elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
        cloud_ps_heter_env_set(args)
        args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
        args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


def which_distributed_mode(args):
    ps_args = [
280 281
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
        '--workers', '--heter_workers', '--http_port'
282
    ]
283
    collective_args = ['--ips']
284

285
    ps_heter_args = ["--heter_worker_num", "--heter_workers"]
286 287 288 289 290 291 292 293

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
294 295 296 297 298 299

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

300
    if fluid.core.is_compiled_with_cuda():
301 302 303
        device_count = fluid.core.get_cuda_device_count()
    elif fluid.core.is_compiled_with_xpu():
        device_count = fluid.core.get_xpu_device_count()
304
    else:
305
        device_count = 0
306

307 308
    if len(has_ps_args) > 0:
        logger.info(
309 310
            "Run parameter-sever mode. pserver arguments:{}, cuda or xpu count:{}".
            format(has_ps_args, device_count))
311 312 313 314 315
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
316
    elif len(has_collective_args) > 0:
317
        logger.info("Run collective gpu mode. gpu arguments:{}, cuda count:{}".
318
                    format(has_collective_args, device_count))
319
        return DistributeMode.COLLECTIVE
320
    else:
321 322
        if not fluid.core.is_compiled_with_cuda(
        ) and not fluid.core.is_compiled_with_xpu():
323
            logger.warning(
324
                "Not found distinct arguments and not compiled with cuda or xpu. Default use ps mode"
325 326 327 328
            )
            return DistributeMode.PS
        else:
            logger.warning(
329
                "Not found distinct arguments and compiled with cuda or xpu. Default use collective mode"
330 331
            )
            return DistributeMode.COLLECTIVE
332 333 334 335 336 337 338 339 340


def launch():
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

    distribute_mode = which_distributed_mode(args)
    if distribute_mode == DistributeMode.COLLECTIVE:
341
        launch_collective(args)
342 343
    else:
        launch_ps(args, distribute_mode)
344 345 346 347


if __name__ == "__main__":
    launch()