launch.py 26.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67
from sys import version
import subprocess
import os
import time
import six
import copy
68
import pathlib
69
import argparse
70 71 72
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
73
from paddle.distributed.fleet import launch_utils
74

75
# TODO(danleifeng): Don't import * from a module
76
from paddle.distributed.fleet.launch_utils import *
77 78
from paddle.distributed.fleet import cloud_utils
from paddle.distributed.fleet import ascend_utils
79

K
kuizhiqing 已提交
80
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
81

82 83
__all__ = []

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
101
    base_group = parser.add_argument_group("Base Parameters")
102

103 104
    base_group.add_argument(
        "--log_dir",
105
        type=str,
106
        default="log",
G
Guoxia Wang 已提交
107
        help="The path for each process's log. Default --log_dir=log/")
X
xiongkun 已提交
108 109 110 111 112 113
    base_group.add_argument(
        "--backend",
        type=str,
        default="auto",
        help="Specifize the backend, can be gloo|nccl|bkcl|auto. Default value is auto which perfers nccl or bkcl."
    )
114 115 116 117 118 119 120 121
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

122 123 124
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
125
        default=None,
126 127
        help="run mode of job, can be:collective/ps/ps-heter")

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
148

149
    base_group.add_argument(
150 151 152 153 154 155 156
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

157 158 159 160 161 162 163 164 165 166
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
    collective_group.add_argument(
        "--rank_mapping_file",
        type=argparse.FileType('r'),
        default=sys.stdin,
        help="This rank mapping information in json format is used specifically "
        "for lazy launch for auto parallel. Some of the ranks in each node "
        "may not be used, and the indices of rank should be kept the same "
        "as the indices of sub-task splited by auto parallel. "
        " { "
        "   \"ip_ranks\": [ "
        "     { "
        "       \"ip\": \"127.0.0.1\", "
        "       \"ranks\": [0,1] "
        "     }, "
        "     { "
        "       \"ip\": \"127.0.0.2\", "
        "       \"ranks\": [2,3,4] "
        "     } "
        "   ] "
        " } ")
    collective_group.add_argument(
        "--enable_auto_mapping",
        type=bool,
        default=False,
        help="Set true to enable the lazy launch for auto-parallel scenario.")
192 193 194 195 196 197 198 199 200 201 202

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
203
        help="User defined heter workers in each stage ip1:port1;ip2:port2")
204 205 206 207
    ps_group.add_argument(
        "--heter_devices",
        type=str,
        default="",
208
        help="User defined heter devices in each stage cpu;gpu;cpu")
209 210 211 212

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
213 214 215
        "--heter_worker_num",
        type=str,
        help="number of heter_workers in each stage 1;2;3")
216
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
217

218 219 220 221
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
    elastic_group.add_argument(
        "--elastic_server", type=str, help="etcd server host:port")
222 223 224
    elastic_group.add_argument(
        "--elastic_pre_hook", type=str, help="elastic pre_hook shell cmd")

225 226 227 228 229 230 231 232
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
    elastic_group.add_argument(
        "--host", type=str, help="bind host, default to POD_IP env")
    elastic_group.add_argument(
        "--force", type=bool, default=False, help="update np force")

233 234 235
    return parser.parse_args()


236
def get_cluster_from_args(args, device_mode, devices_per_proc):
237 238 239 240
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
241 242 243 244
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
245

246
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
247
        % (node_ip, node_ips)
248 249
    node_rank = node_ips.index(node_ip)

250
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
251 252 253 254 255
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
256
        free_ports = find_free_ports(len(devices_per_proc))
257 258 259 260 261
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
262
            start_port = int(os.environ.get('FLAGS_START_PORT'))
263

264 265 266
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
267

268 269 270
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
271 272
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
273 274


X
xiongkun 已提交
275 276 277 278 279 280 281 282 283 284 285 286
def cpuonly_check(args):
    if args.ips and len(args.ips.split(',')) > 1:
        raise RuntimeError(
            "CPUONLY launch only support single trainer, that is len(ips)=1, but got %s."
            % args.ips)
    if args.run_mode:
        assert args.run_mode == 'cpuonly', "CPUONLY launch only support run mode is CPUONLY"
    if args.servers:
        raise RuntimeError("CPUONLY launch can't have --servers as arguments.")
    return True


287
def get_cluster_info(args):
K
kuizhiqing 已提交
288
    # parse arguments, used for cloud-single-machine and local
X
xiongkun 已提交
289
    if args.backend == 'gloo': cpuonly_check(args)
K
kuizhiqing 已提交
290 291 292 293 294 295 296 297 298 299 300
    (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(args)
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
301 302 303
    # lazy launch for auto-parallel
    if args.enable_auto_mapping == True:
        cluster, pod = get_mapped_cluster_from_args(args, device_mode)
K
kuizhiqing 已提交
304
    else:
305 306 307 308 309 310 311 312 313 314 315 316 317 318 319
        # for ascend
        if device_mode == DeviceMode.ASCEND_NPU:
            cluster, pod = ascend_utils.get_cloud_cluster(
                rank_table_file=os.getenv("RANK_TABLE_FILE", None),
                device_mode=device_mode,
                start_port=start_port)
        elif cloud_utils.use_paddlecloud() and trainers_num != 1:
            cluster, pod = cloud_utils.get_cloud_cluster(
                args.ips, device_mode, devices_per_proc, start_port)
            logger.debug("get cluster from cloud:{}".format(cluster))
        else:
            # trainers_num = 1 or not use paddlecloud ips="a,b"
            cluster, pod = get_cluster_from_args(args, device_mode,
                                                 devices_per_proc)
            logger.debug("get cluster from args:{}".format(cluster))
320 321
    return cluster, pod

K
kuizhiqing 已提交
322

323
def get_global_envs(args, tmp_dir):
K
kuizhiqing 已提交
324 325 326 327
    global_envs = copy.copy(os.environ.copy())
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
328
    global_envs["PADDLE_GLOO_FS_PATH"] = tmp_dir
X
xiongkun 已提交
329
    global_envs["PADDLE_DISTRI_BACKEND"] = args.backend
330 331 332 333 334 335 336
    return global_envs


def launch_collective(args):
    tmp_dir = tempfile.mkdtemp()
    cluster, pod = get_cluster_info(args)
    global_envs = get_global_envs(args, tmp_dir)
K
kuizhiqing 已提交
337 338 339 340 341 342 343 344 345 346 347

    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
        log_dir=args.log_dir,
        envs=global_envs)

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
348

K
kuizhiqing 已提交
349
    while True:
K
kuizhiqing 已提交
350 351
        try:
            alive = watch_local_trainers(procs, cluster.trainers_nranks())
352

K
kuizhiqing 已提交
353 354 355 356
            if not alive:
                logger.info("Local processes completed.")
                logger.debug("POD info:{}".format(pod))
                break
357

K
kuizhiqing 已提交
358 359 360 361 362 363
            time.sleep(3)

        except:
            logger.warning("Terminating... exit")
            terminate_local_procs(procs)
            exit(1)
K
kuizhiqing 已提交
364

365 366
    if os.path.exists(tmp_dir):
        shutil.rmtree(tmp_dir)
367

368

369 370 371 372 373 374 375
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
376 377 378 379 380
    #elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
    #    cloud_ps_heter_env_set(args)
    #    args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
    #    args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
    #    args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")
381 382 383 384 385 386

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


387 388 389 390 391 392 393 394 395 396 397 398
def infer_backend(args):
    if args.backend != "auto": return
    if fluid.core.is_compiled_with_cuda():
        args.backend = 'nccl'
    elif fluid.core.is_compiled_with_npu():
        args.backend = 'unknown'
    elif fluid.core.is_compiled_with_xpu():
        args.backend = 'bkcl'
    else:
        args.backend = 'gloo'


399
def which_distributed_mode(args):
400
    infer_backend(args)  # modify the args.backend
401 402 403 404 405 406 407 408 409 410
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

411
    ps_args = [
412
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
413
        '--workers', '--heter_workers', '--heter_devices', '--http_port'
414
    ]
415
    collective_args = ['--ips']
416

417
    ps_heter_args = ["--heter_worker_num", "--heter_workers", "--heter_devices"]
418 419 420 421 422 423 424 425

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
426 427 428 429 430 431

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

432
    if fluid.core.is_compiled_with_cuda():
433
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
434 435
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
436
    elif fluid.core.is_compiled_with_xpu():
437
        accelerators = fluid.core.get_xpu_device_count()
438
    else:
439
        accelerators = 0
440

441 442
    if len(has_ps_args) > 0:
        logger.info(
443 444
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
            format(has_ps_args, accelerators))
445 446 447 448 449
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
450
    elif len(has_collective_args) > 0:
451 452
        logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
                    format(has_collective_args, accelerators))
453
        return DistributeMode.COLLECTIVE
454
    else:
455 456
        if not fluid.core.is_compiled_with_cuda(
        ) and not fluid.core.is_compiled_with_xpu():
X
xiongkun 已提交
457 458 459 460 461 462 463
            if args.servers:
                logger.warning(
                    "Not found distinct arguments and not compiled with cuda or xpu. \
But found args.servers not empty, default use ps mode")
                return DistributeMode.PS
            else:
                return DistributeMode.COLLECTIVE
464 465
        else:
            logger.warning(
466
                "Not found distinct arguments and compiled with cuda or xpu. Default use collective mode"
467 468
            )
            return DistributeMode.COLLECTIVE
469 470 471


def launch():
G
Guoxia Wang 已提交
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
    """
    Paddle distribution training entry ``python -m paddle.distributed.launch``.
    
    Usage:
        .. code-block:: bash
            :name: code-block-bash1

            python -m paddle.distributed.launch [-h] [--log_dir LOG_DIR] [--nproc_per_node NPROC_PER_NODE] [--run_mode RUN_MODE] [--gpus GPUS]
                             [--selected_gpus GPUS] [--ips IPS] [--servers SERVERS] [--workers WORKERS] [--heter_workers HETER_WORKERS]
                             [--worker_num WORKER_NUM] [--server_num SERVER_NUM] [--heter_worker_num HETER_WORKER_NUM]
                             [--http_port HTTP_PORT] [--elastic_server ELASTIC_SERVER] [--job_id JOB_ID] [--np NP] [--scale SCALE]
                             [--host HOST] [--force FORCE]
                             training_script ...    


    Base Parameters:
G
Guoxia Wang 已提交
488
        - ``--log_dir``: The path for each process's log. e.g., ``--log_dir=output_dir``. Default ``--log_dir=log``.
G
Guoxia Wang 已提交
489

G
Guoxia Wang 已提交
490
        - ``--nproc_per_node``: The number of processes to launch on a node. In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus).  e.g., ``--nproc_per_node=8``
G
Guoxia Wang 已提交
491

G
Guoxia Wang 已提交
492
        - ``--run_mode``: run mode of job, can be:collective/ps/ps-heter. e.g., ``--run_mode=ps``. Default ``--run_mode=collective``.
G
Guoxia Wang 已提交
493

G
Guoxia Wang 已提交
494
        - ``--gpus``: It's for gpu training. e.g., ``--gpus=0,1,2,3`` will launch four training processes each bound to one gpu.
G
Guoxia Wang 已提交
495 496 497

        - ``--selected_gpus``: gpus aliases, recommend to use ``--gpus``.
        
G
Guoxia Wang 已提交
498
        - ``--xpus``: It's for xpu training if xpu is available. e.g., ``--xpus=0,1,2,3``.
G
Guoxia Wang 已提交
499 500 501
        
        - ``--selected_xpus``: xpus aliases, recommend to use ``--xpus``.

G
Guoxia Wang 已提交
502
        - ``training_script``: The full path to the single GPU training program/script to be launched in parallel, followed by all the arguments for the training script. e.g., ``traing.py``
G
Guoxia Wang 已提交
503

G
Guoxia Wang 已提交
504
        - ``training_script_args``: The args of training_script. e.g., ``--lr=0.1``
G
Guoxia Wang 已提交
505 506

    Collective Parameters:
G
Guoxia Wang 已提交
507
        - ``--ips``: Paddle cluster nodes ips, e.g., ``--ips=192.168.0.16,192.168.0.17``. Default ``--ips=127.0.0.1``.
G
Guoxia Wang 已提交
508 509

    Parameter-Server Parameters:
G
Guoxia Wang 已提交
510
        - ``--servers``: User defined servers ip:port, e.g., ``--servers="192.168.0.16:6170,192.168.0.17:6170"``
G
Guoxia Wang 已提交
511

G
Guoxia Wang 已提交
512
        - ``--workers``: User defined workers ip:port, e.g., ``--workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172"``
G
Guoxia Wang 已提交
513

514
        - ``--heter_workers``: User defined heter workers ip1:port1;ip2:port2, e.g., ``--heter_workers="192.168.0.16:6172;192.168.0.17:6172"``
G
Guoxia Wang 已提交
515 516 517 518 519

        - ``--worker_num``: Number of workers (It recommend to set when in the emulated distributed environment using single node)

        - ``--server_num``: Number of servers (It recommend to set when in the emulated distributed environment using single node)

520 521 522
        - ``--heter_worker_num``: Number of heter_workers in each stage (It recommend to set when in the emulated distributed environment using single node)
        
        - ``--heter_devices``: Type of heter_device in each stage
G
Guoxia Wang 已提交
523 524 525 526

        - ``--http_port``: Gloo http Port

    Elastic Parameters:
G
Guoxia Wang 已提交
527
        - ``--elastic_server``: etcd server host:port, e.g., ``--elastic_server=127.0.0.1:2379``
G
Guoxia Wang 已提交
528

G
Guoxia Wang 已提交
529
        - ``--job_id``: job unique id, e.g., ``--job_id=job1``
G
Guoxia Wang 已提交
530

G
Guoxia Wang 已提交
531
        - ``--np``: job pod/node number, e.g., ``--np=2``
G
Guoxia Wang 已提交
532 533 534 535 536 537 538 539 540 541 542

        - ``--host``: bind host, default to POD_IP env.


    Returns:
        ``None``

    Examples 1 (collective, single node):
        .. code-block:: bash
            :name: code-block-example-bash1
            
G
Guoxia Wang 已提交
543
            # For training on single node using 4 gpus.
G
Guoxia Wang 已提交
544 545 546 547 548 549 550

            python -m paddle.distributed.launch --gpus=0,1,2,3 train.py --lr=0.01
        
    Examples 2 (collective, multi node):
        .. code-block:: bash
            :name: code-block-example-bash2

G
Guoxia Wang 已提交
551 552 553
            # The parameters of --gpus and --ips must be consistent in each node.

            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 
G
Guoxia Wang 已提交
554 555 556 557 558 559 560 561 562 563 564 565

            # On 192.168.0.16:

            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01

            # On 192.168.0.17:
            python -m paddle.distributed.launch --gpus=0,1,2,3 --ips=192.168.0.16,192.168.0.17 train.py --lr=0.01
        
    Examples 3 (ps, cpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash3

G
Guoxia Wang 已提交
566
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers.
G
Guoxia Wang 已提交
567 568 569 570 571 572 573
            
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
        
    Examples 4 (ps, cpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash4

G
Guoxia Wang 已提交
574
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587

            # On 192.168.0.16:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 5 (ps, gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash5

G
Guoxia Wang 已提交
588
           # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, each worker use single gpu.
G
Guoxia Wang 已提交
589 590 591 592 593 594 595 596
            
            export CUDA_VISIBLE_DEVICES=0,1,2,3
            python -m paddle.distributed.launch --server_num=2 --worker_num=4 train.py --lr=0.01
            
    Examples 6 (ps, gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash6

G
Guoxia Wang 已提交
597
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server and 2 workers.
G
Guoxia Wang 已提交
598 599 600 601 602 603 604 605 606 607 608 609 610 611 612

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.16:6172,192.168.0.17:6171,192.168.0.17:6172" train.py --lr=0.01

    Examples 7 (ps-heter, cpu + gpu, single node):
        .. code-block:: bash
            :name: code-block-example-bash7

G
Guoxia Wang 已提交
613
            # To simulate distributed environment using single node, e.g., 2 servers and 4 workers, two workers use gpu, two workers use cpu.
G
Guoxia Wang 已提交
614 615 616 617 618 619 620 621
            
            export CUDA_VISIBLE_DEVICES=0,1
            python -m paddle.distributed.launch --server_num=2 --worker_num=2 --heter_worker_num=2 train.py --lr=0.01
            
    Examples 8 (ps-heter, cpu + gpu, multi node):
        .. code-block:: bash
            :name: code-block-example-bash8

G
Guoxia Wang 已提交
622
            # For training on multiple nodes, e.g., 192.168.0.16, 192.168.0.17 where each node with 1 server, 1 gpu worker, 1 cpu worker.
G
Guoxia Wang 已提交
623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641

            # On 192.168.0.16:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

            # On 192.168.0.17:

            export CUDA_VISIBLE_DEVICES=0
            python -m paddle.distributed.launch --servers="192.168.0.16:6170,192.168.0.17:6170" --workers="192.168.0.16:6171,192.168.0.17:6171" --heter_workers="192.168.0.16:6172,192.168.0.17:6172" train.py --lr=0.01

    Examples 9 (elastic):
        .. code-block:: bash
            :name: code-block-example-bash9

            python -m paddle.distributed.launch --elastic_server=127.0.0.1:2379 --np=2 --job_id=job1  --gpus=0,1,2,3 train.py
        
    """

642 643 644 645
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

X
xiongkun 已提交
646
    if args.backend == 'auto':
647 648
        distribute_mode = which_distributed_mode(
            args)  # which_distributed_mode must modify args.backend
X
xiongkun 已提交
649 650 651 652 653
    else:
        assert args.run_mode == 'collective' or args.run_mode == None, "When backend is not 'auto', run mode must be collective"
        check_backend(args.backend)
        distribute_mode = DistributeMode.COLLECTIVE

654 655
    assert args.backend in ['gloo', 'nccl', 'bkcl', 'unknown']

X
xiongkun 已提交
656 657
    if args.backend == 'gloo':
        logger.warning("launch start with CPUONLY mode")
658

659 660 661
    block_windows_and_macos(
        args.backend)  # raise error when using gloo on windows or macos

K
kuizhiqing 已提交
662 663 664
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
665

K
kuizhiqing 已提交
666 667
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
668
    else:
K
kuizhiqing 已提交
669
        launch_ps(args, distribute_mode)
670 671 672 673


if __name__ == "__main__":
    launch()