launch.py 14.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
r"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67 68 69 70
from sys import version
import subprocess
import os
import time
import six
import copy
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid
71
from paddle.distributed.fleet import launch_utils
72

73
# TODO(danleifeng): Don't import * from a module
74 75
from paddle.distributed.fleet.launch_utils import *
import paddle.distributed.fleet.cloud_utils as cloud_utils
76
import paddle.distributed.fleet.ascend_utils as ascend_utils
77

K
kuizhiqing 已提交
78
from paddle.distributed.fleet.elastic import enable_elastic, launch_elastic
79

80 81
__all__ = []

82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98

def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
99
    base_group = parser.add_argument_group("Base Parameters")
100

101 102
    base_group.add_argument(
        "--log_dir",
103
        type=str,
104 105 106 107
        default="log",
        help="The path for each process's log.If it's not set, the log will printed to default pipe."
    )

108 109 110 111 112 113 114 115
    base_group.add_argument(
        "--nproc_per_node",
        type=int,
        default=None,
        help="The number of processes to launch on a node."
        "In gpu training, it should be less or equal to the gpus number of you system(or you set by --gpus). And so each process can"
        " bound to one or average number of gpus.")

116 117 118
    base_group.add_argument(
        "--run_mode",
        type=str,
G
gongweibao 已提交
119
        default=None,
120 121
        help="run mode of job, can be:collective/ps/ps-heter")

122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
    if fluid.core.is_compiled_with_cuda():
        base_group.add_argument(
            "--gpus",
            type=str,
            default=None,
            help="It's for gpu training."
            "For example:"
            "--gpus=\"0,1,2,3\" will launch four training processes each bound to one gpu."
        )
        base_group.add_argument("--selected_gpus", dest="gpus")

    if fluid.core.is_compiled_with_xpu():
        base_group.add_argument(
            "--xpus",
            type=str,
            default=None,
            help="It's for xpu training. For example: "
            "--xpus=\"0,1,2,3\" will launch four training processes each bound to one xpu."
        )
        base_group.add_argument("--selected_xpus", dest="xpus")
142

143
    base_group.add_argument(
144 145 146 147 148 149 150
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
        help="User defined heter workers ip:port")

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
        "--heter_worker_num", type=int, help="number of heter_workers")
178
    ps_group.add_argument("--http_port", type=int, help="Gloo http Port")
179

180 181 182 183 184 185 186 187 188 189 190 191
    # parameter elastic mode
    elastic_group = parser.add_argument_group("Elastic Parameters")
    elastic_group.add_argument(
        "--elastic_server", type=str, help="etcd server host:port")
    elastic_group.add_argument("--job_id", type=str, help="job unique id")
    elastic_group.add_argument("--np", type=int, help="job pod/node number")
    elastic_group.add_argument("--scale", type=int, default=0, help="scale np")
    elastic_group.add_argument(
        "--host", type=str, help="bind host, default to POD_IP env")
    elastic_group.add_argument(
        "--force", type=bool, default=False, help="update np force")

192 193 194
    return parser.parse_args()


195
def get_cluster_from_args(args, device_mode, devices_per_proc):
196 197 198 199
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
200 201 202 203
        if args.host:
            node_ip = args.host
        else:
            _, node_ip = get_host_name_ip()
204

205
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
206
        % (node_ip, node_ips)
207 208
    node_rank = node_ips.index(node_ip)

209
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
210 211 212 213 214
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
215
        free_ports = find_free_ports(len(devices_per_proc))
216 217 218 219 220
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
221
            start_port = int(os.environ.get('FLAGS_START_PORT'))
222

223 224 225
        free_ports = [
            x for x in range(start_port, start_port + len(devices_per_proc))
        ]
226

227 228 229
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
230 231
    return get_cluster(node_ips, node_ip, trainer_endpoints, device_mode,
                       devices_per_proc)
232 233


K
kuizhiqing 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
def launch_collective(args):
    # parse arguments, used for cloud-single-machine and local
    (device_mode, devices_per_proc) = launch_utils.get_device_proc_info(args)
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} mode:{} devices:{}".format(
        trainers_num, device_mode, devices_per_proc))

    cluster = None
    pod = None

    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
    if cloud_utils.use_paddlecloud() and trainers_num != 1:
        cluster, pod = cloud_utils.get_cloud_cluster(
            args.ips, device_mode, devices_per_proc, start_port)
        logger.debug("get cluster from cloud:{}".format(cluster))
    elif device_mode == DeviceMode.ASCEND_NPU:
        # for ascend
        cluster, pod = ascend_utils.get_cloud_cluster(
            rank_table_file=os.getenv("RANK_TABLE_FILE", None),
            device_mode=device_mode,
            start_port=start_port)
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, device_mode,
                                             devices_per_proc)
        logger.debug("get cluster from args:{}".format(cluster))

    global_envs = copy.copy(os.environ.copy())
    gloo_rendezvous_dir = tempfile.mkdtemp()
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = str(os.getenv("PADDLE_WITH_GLOO", "0"))
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
    global_envs["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir

    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
        log_dir=args.log_dir,
        envs=global_envs)

    for idx, proc in enumerate(procs):
        print("launch proc_id:{} idx:{}".format(proc.proc.pid, idx))
280

K
kuizhiqing 已提交
281 282
    while True:
        alive = watch_local_trainers(procs, cluster.trainers_nranks())
283

K
kuizhiqing 已提交
284 285 286 287
        if not alive:
            logger.info("Local processes completed.")
            logger.debug("POD info:{}".format(pod))
            break
288

K
kuizhiqing 已提交
289 290 291 292
        time.sleep(3)

    if os.path.exists(gloo_rendezvous_dir):
        shutil.rmtree(gloo_rendezvous_dir)
293

294

295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
    elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
        cloud_ps_heter_env_set(args)
        args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
        args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


def which_distributed_mode(args):
314 315 316 317 318 319 320 321 322 323
    if args.run_mode is not None:
        assert args.run_mode in ["collective", "ps", "ps-heter"]

    if args.run_mode == "collective":
        return DistributeMode.COLLECTIVE
    elif args.run_mode == "ps":
        return DistributeMode.PS
    elif args.run_mode == "ps-heter":
        return DistributeMode.PS_HETER

324
    ps_args = [
325 326
        '--worker_num', '--server_num', '--heter_worker_num', '--servers',
        '--workers', '--heter_workers', '--http_port'
327
    ]
328
    collective_args = ['--ips']
329

330
    ps_heter_args = ["--heter_worker_num", "--heter_workers"]
331 332 333 334 335 336 337 338

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
339 340 341 342 343 344

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

345
    if fluid.core.is_compiled_with_cuda():
346
        accelerators = fluid.core.get_cuda_device_count()
B
Baibaifan 已提交
347 348
    elif fluid.core.is_compiled_with_npu():
        accelerators = fluid.core.get_npu_device_count()
349
    elif fluid.core.is_compiled_with_xpu():
350
        accelerators = fluid.core.get_xpu_device_count()
351
    else:
352
        accelerators = 0
353

354 355
    if len(has_ps_args) > 0:
        logger.info(
356 357
            "Run parameter-sever mode. pserver arguments:{}, accelerators count:{}".
            format(has_ps_args, accelerators))
358 359 360 361 362
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
363
    elif len(has_collective_args) > 0:
364 365
        logger.info("Run collective mode. gpu arguments:{}, cuda count:{}".
                    format(has_collective_args, accelerators))
366
        return DistributeMode.COLLECTIVE
367
    else:
368 369
        if not fluid.core.is_compiled_with_cuda(
        ) and not fluid.core.is_compiled_with_xpu():
370
            logger.warning(
371
                "Not found distinct arguments and not compiled with cuda or xpu. Default use ps mode"
372 373 374 375
            )
            return DistributeMode.PS
        else:
            logger.warning(
376
                "Not found distinct arguments and compiled with cuda or xpu. Default use collective mode"
377 378
            )
            return DistributeMode.COLLECTIVE
379 380 381 382 383 384 385 386


def launch():
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

    distribute_mode = which_distributed_mode(args)
387

K
kuizhiqing 已提交
388 389 390
    if enable_elastic(args, distribute_mode):
        launch_elastic(args, distribute_mode)
        return
391

K
kuizhiqing 已提交
392 393
    if distribute_mode == DistributeMode.COLLECTIVE:
        launch_collective(args)
394
    else:
K
kuizhiqing 已提交
395
        launch_ps(args, distribute_mode)
396 397 398 399


if __name__ == "__main__":
    launch()