launch.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
15
fleetrun is a module that spawns multiple distributed
16 17
process on each training node for gpu training and cpu training.
Usage:
18
    In both of single node training or multiple node training, this module
19 20 21 22 23 24 25 26
launch a process on each of the given gpu card or cpu machine.
    GPU training:
    1. for single node training with all visible gpu cards:
       fleetrun your_training_py (arg1 arg2 and all others)
    2. for single node training with [0,4) cards
       fleetrun --gpus="0,1,2,3" your_training_py (arg1 arg2 and all others)
    3. for multiple node training such as two node:192.168.0.16, 192.168.0.17
        on 192.168.0.16:
27
            fleetrun --ips="192.168.0.16,192.168.0.17" \
28 29 30 31 32 33
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --ips="192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    CPU training:
    1. for single node training with multi servers and workers:
34
        fleetrun --server_num=2 --worker_num=2 your_training_py (arg1 arg2 and all others)
35
    2. for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
36
        with 2 servers and 4 workers.
37
        on 192.168.0.16:
38 39
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
40 41 42
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6171" \
43 44 45 46 47 48 49 50 51 52 53
                --workers="192.168.0.16,192.168.0.17,192.168.0.16,192.168.0.17" \
                your_training_py (arg1 arg2 and all others)
    3. use gloo backend for multiple node training such as two node:192.168.0.16, 192.168.0.17 \
        with 2 servers and 4 workers. (workers should set port)
        on 192.168.0.16:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
                your_training_py (arg1 arg2 and all others)
        on 192.168.0.17:
            fleetrun --servers="192.168.0.16:6170,192.168.0.17:6170" \
                --workers="192.168.0.16:6171,192.168.0.17:6171,192.168.0.16:6172,192.168.0.17:6172" \
54 55 56 57
                your_training_py (arg1 arg2 and all others)
"""

from __future__ import print_function
58 59

import shutil
60
import sys
61
import tempfile
62 63 64 65 66 67 68 69 70 71
from sys import version
import subprocess
import os
import time
import six
import copy
from argparse import ArgumentParser, REMAINDER
import paddle
import paddle.fluid as fluid

72 73
from paddle.distributed.fleet.launch_utils import *
import paddle.distributed.fleet.cloud_utils as cloud_utils
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91


def _print_arguments(args):
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def _parse_args():
    """
    Helper function parsing the command line options
    @retval ArgumentParser
    """
    parser = ArgumentParser(
        description='''start paddle training using multi-process mode.
see: http://www.paddlepaddle.org/documentation/docs/zh/1.6/user_guides/howto/training/cluster_howto.html#permalink-8--nccl2-
''')
92
    base_group = parser.add_argument_group("Base Parameters")
93

94 95
    base_group.add_argument(
        "--log_dir",
96
        type=str,
97 98 99 100 101
        default="log",
        help="The path for each process's log.If it's not set, the log will printed to default pipe."
    )

    base_group.add_argument(
102 103 104 105 106 107 108
        "--gpus",
        type=str,
        default=None,
        help="It's for gpu training and the training process will run on the gpus,"
        "each process is bound to a single GPU. And if it's not set, this module will use all the gpu cards for training."
    )

109
    base_group.add_argument(
110 111 112 113 114 115 116
        "training_script",
        type=str,
        help="The full path to the single GPU training "
        "program/script to be launched in parallel, "
        "followed by all the arguments for the "
        "training script")

117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
    base_group.add_argument('training_script_args', nargs=REMAINDER)

    # Optional arguments for the launch helper
    # for collective
    collective_group = parser.add_argument_group("Collective Parameters")
    collective_group.add_argument(
        "--ips",
        type=str,
        default="127.0.0.1",
        help="Paddle cluster nodes ips, such as 192.168.0.16,192.168.0.17..")

    ps_group = parser.add_argument_group("Parameter-Server Parameters")
    # for parameter server
    ps_group.add_argument(
        "--servers", type=str, default="", help="User defined servers ip:port")
    ps_group.add_argument(
        "--workers", type=str, default="", help="User defined workers ip:port")
    ps_group.add_argument(
        "--heter_workers",
        type=str,
        default="",
        help="User defined heter workers ip:port")

    ps_group.add_argument("--worker_num", type=int, help="number of workers")
    ps_group.add_argument("--server_num", type=int, help="number of servers")
    ps_group.add_argument(
        "--heter_worker_num", type=int, help="number of heter_workers")

145 146 147 148 149 150 151 152 153 154 155
    return parser.parse_args()


def get_cluster_from_args(args, gpus):
    node_ips = [x.strip() for x in args.ips.split(',')]
    if len(node_ips) == 1:
        node_ip = node_ips[0]
    else:
        _, node_ip = get_host_name_ip()

    # node_ip = args.node_ip
156
    assert node_ip in node_ips, "Can't find your local ip {%s} in node_ips: {%s}" \
157
        % (node_ip, node_ips)
158 159
    node_rank = node_ips.index(node_ip)

160
    logger.debug("parsed from args: node_ips:{} node_ip:{} node_rank:{}".format(
161 162 163 164 165 166 167 168 169 170 171
        node_ips, node_ip, node_rank))

    free_ports = None
    if not cloud_utils.use_paddlecloud() and len(
            node_ips) <= 1 and os.environ.get('FLAGS_START_PORT') is None:
        free_ports = find_free_ports(len(gpus))
        if free_ports is not None:
            free_ports = list(free_ports)
    else:
        start_port = 6070
        if os.environ.get('FLAGS_START_PORT') is not None:
172
            start_port = int(os.environ.get('FLAGS_START_PORT'))
173 174 175

        free_ports = [x for x in range(start_port, start_port + len(gpus))]

176 177 178 179
    trainer_endpoints = []
    for ip in node_ips:
        trainer_endpoints.append(["%s:%d" % (ip, port) for port in free_ports])
    return get_cluster(node_ips, node_ip, trainer_endpoints, gpus)
180 181 182 183 184 185 186 187 188 189 190 191


def launch_collective(args):
    # parse arguments, used for cloud-single-machine and local
    gpus = get_gpus(args.gpus)
    trainers_num = cloud_utils.get_trainers_num()
    logger.debug("parsed from args trainerss_num:{} gpus:{}".format(
        trainers_num, gpus))

    cluster = None
    pod = None

192 193 194
    start_port = 6170
    if os.environ.get('FLAGS_START_PORT') is not None:
        start_port = os.environ.get('FLAGS_START_PORT')
195
    if cloud_utils.use_paddlecloud() and trainers_num != 1:
196
        cluster, pod = cloud_utils.get_cloud_cluster(args.ips, gpus, start_port)
197
        logger.debug("get cluster from cloud:{}".format(cluster))
198 199 200
    else:
        # trainers_num = 1 or not use paddlecloud ips="a,b"
        cluster, pod = get_cluster_from_args(args, gpus)
201
        logger.debug("get cluster from args:{}".format(cluster))
202

203 204 205 206
    global_envs = copy.copy(os.environ.copy())
    gloo_rendezvous_dir = tempfile.mkdtemp()
    # add gloo env
    global_envs["PADDLE_WITH_GLOO"] = "1"
207
    global_envs["PADDLE_GLOO_RENDEZVOUS"] = "3"
208 209
    global_envs["PADDLE_GLOO_FS_PATH"] = gloo_rendezvous_dir

210 211 212 213 214
    procs = start_local_trainers(
        cluster,
        pod,
        training_script=args.training_script,
        training_script_args=args.training_script_args,
215 216
        log_dir=args.log_dir,
        envs=global_envs)
217 218 219 220 221

    while True:
        alive = watch_local_trainers(procs, cluster.trainers_nranks())

        if not alive:
222 223
            logger.info("Local processes completed.")
            logger.debug("POD info:{}".format(pod))
224 225 226 227
            break

        time.sleep(3)

228 229 230
    if os.path.exists(gloo_rendezvous_dir):
        shutil.rmtree(gloo_rendezvous_dir)

231

232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
def launch_ps(args, distribute_mode):
    cloud_flag = cloud_utils.use_paddlecloud()

    # for ps-cpu on paddlecloud
    if cloud_flag and distribute_mode == DistributeMode.PS:
        direct_start(args)
        return
    elif cloud_flag and distribute_mode == DistributeMode.PS_HETER:
        cloud_ps_heter_env_set(args)
        args.workers = os.getenv("PADDLE_TRAINER_ENDPOINTS")
        args.servers = os.getenv("PADDLE_PSERVERS_IP_PORT_LIST")
        args.heter_workers = os.getenv("PADDLE_HETER_TRAINER_IP_PORT_LIST")

    ps_launcher = ParameterServerLauncher(args, distribute_mode)
    ps_launcher.start_ps()
    return


def which_distributed_mode(args):
    ps_args = [
        '--worker_num',
        '--server_num',
        '--heter_worker_num',
        '--servers',
        '--workers',
        '--heter_workers',
258
    ]
259
    collective_args = ['--ips']
260

261
    ps_heter_args = ["--heter_worker_num", "--heter_workers"]
262 263 264 265 266 267 268 269

    has_ps_args = [
        ps_arg for ps_arg in ps_args if ps_arg in " ".join(sys.argv[1:-1])
    ]
    has_collective_args = [
        co_arg for co_arg in collective_args
        if co_arg in " ".join(sys.argv[1:-1])
    ]
270 271 272 273 274 275

    if len(has_ps_args) > 1 and len(has_collective_args) > 1:
        raise ValueError(
            "Only one mode(Collective or Parameter-Server) can be selected at the same time, but more than one configuration was received."
        )

276 277 278 279 280
    if fluid.core.is_compiled_with_cuda():
        cuda_device_num = fluid.core.get_cuda_device_count()
    else:
        cuda_device_num = 0

281 282 283 284 285 286 287 288 289
    if len(has_ps_args) > 0:
        logger.info(
            "Run parameter-sever mode. pserver arguments:{}, cuda count:{}".
            format(has_ps_args, cuda_device_num))
        has_ps_heter_args = list(set(has_ps_args) & set(ps_heter_args))
        if len(has_ps_heter_args) > 0:
            return DistributeMode.PS_HETER
        else:
            return DistributeMode.PS
290
    elif len(has_collective_args) > 0:
291
        logger.info("Run collective gpu mode. gpu arguments:{}, cuda count:{}".
292
                    format(has_collective_args, cuda_device_num))
293
        return DistributeMode.COLLECTIVE
294 295
    else:
        logger.warning(
296
            "Not found distinct arguments. Default use gpu collective mode")
297 298 299 300 301 302 303 304 305 306
        return DistributeMode.COLLECTIVE


def launch():
    args = _parse_args()
    logger = get_logger()
    _print_arguments(args)

    distribute_mode = which_distributed_mode(args)
    if distribute_mode == DistributeMode.COLLECTIVE:
307
        launch_collective(args)
308 309
    else:
        launch_ps(args, distribute_mode)
310 311 312 313


if __name__ == "__main__":
    launch()