search.py 39.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
Z
zhiboniu 已提交
16
import paddle
C
Chengmo 已提交
17 18
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
Z
zhiboniu 已提交
19
from ..fluid import layers
J
Jiabin Yang 已提交
20
from ..framework import core
H
hong 已提交
21
from ..fluid.framework import _in_legacy_dygraph, in_dygraph_mode, _non_static_mode
22 23 24
from paddle.common_ops_import import convert_np_dtype_to_dtype_
from paddle.common_ops_import import Variable
from paddle.common_ops_import import VarDesc
W
wanghuancoder 已提交
25
from paddle import _C_ops
Z
zhiboniu 已提交
26
from .logic import logical_not
27

28
# TODO: define searching & indexing functions of a tensor  
29 30
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
31

32 33
__all__ = []

34

35 36
def argsort(x, axis=-1, descending=False, name=None):
    """
W
wawltor 已提交
37
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
57

58
        .. code-block:: python
李灿 已提交
59

60 61
            import paddle
            
62 63 64 65 66 67 68
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
69 70 71
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
N
Noel 已提交
72
            print(out1)
W
wawltor 已提交
73 74 75
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
76
            # [[1 3 2 0]
W
wawltor 已提交
77 78
            #  [0 1 2 3]
            #  [2 0 3 1]]]
N
Noel 已提交
79
            print(out2)
W
wawltor 已提交
80 81 82 83 84 85
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
N
Noel 已提交
86
            print(out3)
W
wawltor 已提交
87 88 89 90 91 92
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
93
    """
H
hong 已提交
94 95 96 97 98
    if in_dygraph_mode():
        _, ids, = _C_ops.final_state_argsort(x, axis, descending)
        return ids

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
99
        _, ids = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


120
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
121 122 123 124 125
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
126
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
127 128
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
129 130
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
131
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
132 133 134
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
135 136 137
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
138 139

    Returns:
W
wawltor 已提交
140
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
141 142 143 144

    Examples:
        .. code-block:: python

W
wawltor 已提交
145
            import paddle
146

147 148 149
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
150
            out1 = paddle.argmax(x)
N
Noel 已提交
151
            print(out1) # 2
152
            out2 = paddle.argmax(x, axis=0)
N
Noel 已提交
153
            print(out2) 
154
            # [2, 2, 0, 1]
W
wawltor 已提交
155
            out3 = paddle.argmax(x, axis=-1)
N
Noel 已提交
156
            print(out3) 
157 158 159 160
            # [2, 3, 1]
            out4 = paddle.argmax(x, axis=0, keepdim=True)
            print(out4)
            # [[2, 2, 0, 1]]
161
    """
162 163 164 165
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
166

167 168 169 170
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
171

172
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
173 174 175 176 177
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

H
hong 已提交
178 179 180
    if in_dygraph_mode():
        return _C_ops.final_state_argmax(x, axis, keepdim, flatten, var_dtype)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
181 182
        out = _C_ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
183 184 185 186 187 188
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
189
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
190
    attrs = {}
W
wawltor 已提交
191 192 193 194
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
195
    attrs['dtype'] = var_dtype
W
wawltor 已提交
196 197 198 199 200 201
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


202
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
203 204 205 206 207 208 209 210 211 212
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
213
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
W
wawltor 已提交
214
        dtype(str): Data type of the output tensor which can
215
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
216 217 218 219 220 221 222 223 224 225 226 227 228
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

229 230 231
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
232
            out1 = paddle.argmin(x)
N
Noel 已提交
233
            print(out1) # 4
234
            out2 = paddle.argmin(x, axis=0)
N
Noel 已提交
235
            print(out2) 
236
            # [1, 1, 1, 2]
W
wawltor 已提交
237
            out3 = paddle.argmin(x, axis=-1)
N
Noel 已提交
238
            print(out3) 
239 240 241 242
            # [0, 0, 2]
            out4 = paddle.argmin(x, axis=0, keepdim=True)
            print(out4)
            # [[1, 1, 1, 2]]
W
wawltor 已提交
243
    """
244 245 246 247
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
248

249 250 251 252
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
253

254
    var_dtype = convert_np_dtype_to_dtype_(dtype)
W
wawltor 已提交
255
    flatten = False
256
    if axis is None:
W
wawltor 已提交
257 258 259
        flatten = True
        axis = 0

H
hong 已提交
260 261 262
    if in_dygraph_mode():
        return _C_ops.final_state_argmin(x, axis, keepdim, flatten, var_dtype)
    if _in_legacy_dygraph():
W
wanghuancoder 已提交
263 264
        out = _C_ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                             keepdim, 'flatten', flatten)
W
wawltor 已提交
265 266 267 268 269 270
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
271
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
272
    out = helper.create_variable_for_type_inference(var_dtype)
273
    attrs = {}
W
wawltor 已提交
274
    attrs['keepdims'] = keepdim
275
    attrs['axis'] = axis
W
wawltor 已提交
276
    attrs['flatten'] = flatten
277
    attrs['dtype'] = var_dtype
278
    helper.append_op(
W
wawltor 已提交
279
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
280 281
    out.stop_gradient = True
    return out
282 283


284
def index_select(x, index, axis=0, name=None):
285
    """
S
swtkiwi 已提交
286

287 288 289 290
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
291

292
    Args:
293 294 295
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
296 297 298
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
299 300

    Returns:
301
        Tensor: A Tensor with same data type as ``x``.
302
    
303 304
    Examples:
        .. code-block:: python
305
            
306 307
            import paddle

308 309 310 311
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
312 313 314 315 316 317 318 319
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
320
    """
321

Z
zhiboniu 已提交
322
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
323
        return _C_ops.index_select(x, index, 'dim', axis)
324

325 326 327
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
328
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
329
                             'paddle.tensor.search.index_select')
330

331
    out = helper.create_variable_for_type_inference(x.dtype)
332 333 334

    helper.append_op(
        type='index_select',
335
        inputs={'X': x,
336 337
                'Index': index},
        outputs={'Out': out},
338
        attrs={'dim': axis})
339 340 341
    return out


342
def nonzero(x, as_tuple=False):
343 344 345 346 347 348 349 350
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
351

352
    Args:
353
        x (Tensor): The input tensor variable.
354 355 356
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
357
        Tensor. The data type is int64.
358 359

    Examples:
360

N
Noel 已提交
361
        .. code-block:: python
李灿 已提交
362

363
            import paddle
364 365

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
N
Noel 已提交
366 367
                                   [0.0, 2.0, 0.0],
                                   [0.0, 0.0, 3.0]])
368 369
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            out_z1 = paddle.nonzero(x1)
N
Noel 已提交
370
            print(out_z1)
371 372 373 374 375
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
N
Noel 已提交
376
                print(out)
377 378 379 380 381 382 383
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
N
Noel 已提交
384
            print(out_z2)
385 386 387 388
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
N
Noel 已提交
389
                print(out)
390 391
            #[[1]
            # [3]]
N
Noel 已提交
392

393 394
    """
    list_out = []
395
    shape = x.shape
396 397
    rank = len(shape)

Z
zhiboniu 已提交
398
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
399
        outs = _C_ops.where_index(x)
400
    else:
401
        outs = layers.where(x)
402 403 404 405 406 407 408 409

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
Z
zhiboniu 已提交
410
                paddle.slice(
411
                    outs, axes=[1], starts=[i], ends=[i + 1]))
412 413 414
        return tuple(list_out)


415
def sort(x, axis=-1, descending=False, name=None):
416
    """
S
swtkiwi 已提交
417

W
wawltor 已提交
418
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
419

420
    Args:
421
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
422 423 424 425 426 427 428 429 430 431 432
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
433
        Tensor: sorted tensor(with the same shape and data type as ``x``).
434
    Examples:
N
Noel 已提交
435

436
        .. code-block:: python
N
Noel 已提交
437

438
            import paddle
N
Noel 已提交
439

440 441 442 443 444 445 446
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
447 448 449
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
N
Noel 已提交
450
            print(out1)
W
wawltor 已提交
451 452 453 454 455 456
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
N
Noel 已提交
457
            print(out2)
458
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
459 460 461 462 463
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
N
Noel 已提交
464
            print(out3)
465
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
466 467 468 469 470
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
471
    """
Z
zhiboniu 已提交
472
    if paddle.in_dynamic_mode():
W
wanghuancoder 已提交
473
        out, _ = _C_ops.argsort(x, 'axis', axis, 'descending', descending)
W
wawltor 已提交
474
        return out
475
    helper = LayerHelper("sort", **locals())
476 477
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
478 479 480 481
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
482
        inputs={'X': x},
483 484 485 486
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
487
    return out
C
Chengmo 已提交
488 489


490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520
def mode(x, axis=-1, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the modes at the optional axis.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle
           
           tensor = paddle.to_tensor([[[1,2,2],[2,3,3]],[[0,5,5],[9,9,0]]], dtype=paddle.float32)
           res = paddle.mode(tensor, 2)
           print(res)
           # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
           #   [[2., 3.],
           #    [5., 9.]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
           #   [[1, 1],
           #    [1, 0]]))
           
    """
521 522 523
    if in_dygraph_mode():
        return _C_ops.final_state_mode(x, axis, keepdim)
    if _in_legacy_dygraph():
524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544
        return _C_ops.mode(x, "axis", axis, "keepdim", keepdim)

    helper = LayerHelper("mode", **locals())
    inputs = {"X": [x]}
    attrs = {}
    attrs['axis'] = axis
    attrs['keepdim'] = keepdim

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="mode",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices


R
ronnywang 已提交
545
def where(condition, x=None, y=None, name=None):
546
    r"""
547 548
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

R
ronnywang 已提交
549 550 551
    **Note**:
        ``paddle.where(condition)`` is identical to ``paddle.nonzero(condition, as_tuple=True)``.

552
    .. math::
C
Chengmo 已提交
553

554
      out_i =
R
ronnywang 已提交
555 556 557 558
      \begin{cases}
      x_i, \quad  \text{if}  \ condition_i \  is \ True \\
      y_i, \quad  \text{if}  \ condition_i \  is \ False \\
      \end{cases}
C
Chengmo 已提交
559

560

561
    Args:
R
ronnywang 已提交
562
        condition(Tensor): The condition to choose x or y. When True(nonzero), yield x, otherwise yield y.
R
ronnywang 已提交
563 564
        x(Tensor or Scalar, optional): x is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
        y(Tensor or Scalar, optional): y is a Tensor or Scalar with data type float32, float64, int32, int64. Either both or neither of x and y should be given.
565 566 567 568 569

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

570
    Returns:
G
GaoWei8 已提交
571
        Tensor: A Tensor with the same data dype as x. 
572

573 574 575
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
576
          import paddle
577

578 579 580
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
581

G
GaoWei8 已提交
582
          print(out)
583
          #out: [1.0, 1.0, 3.2, 1.2]
R
ronnywang 已提交
584 585 586 587 588 589

          out = paddle.where(x>1)
          print(out)
          #out: (Tensor(shape=[2, 1], dtype=int64, place=CPUPlace, stop_gradient=True,
          #            [[2],
          #             [3]]),)
590
    """
R
ronnywang 已提交
591 592 593 594 595 596
    if np.isscalar(x):
        x = layers.fill_constant([1], np.array([x]).dtype.name, x)

    if np.isscalar(y):
        y = layers.fill_constant([1], np.array([y]).dtype.name, y)

R
ronnywang 已提交
597 598 599 600 601 602
    if x is None and y is None:
        return nonzero(condition, as_tuple=True)

    if x is None or y is None:
        raise ValueError("either both or neither of x and y should be given")

Z
zhiboniu 已提交
603
    if not paddle.in_dynamic_mode():
604
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
605
        check_variable_and_dtype(
606
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
607
        check_variable_and_dtype(
608
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
609

610
    condition_shape = list(condition.shape)
611 612
    x_shape = list(x.shape)
    y_shape = list(y.shape)
613

614
    if x_shape == y_shape and condition_shape == x_shape:
615 616 617 618 619
        broadcast_condition = condition
        broadcast_x = x
        broadcast_y = y
    else:
        if core.is_compiled_with_xpu():
Z
zhiboniu 已提交
620 621 622 623 624
            cond_int = paddle.cast(condition, x.dtype)
            cond_not_int = paddle.cast(logical_not(condition), x.dtype)
            out1 = paddle.multiply(x, cond_int)
            out2 = paddle.multiply(y, cond_not_int)
            out = paddle.add(out1, out2)
625
            return out
626

Z
zhiboniu 已提交
627 628 629 630 631 632 633 634 635 636 637 638 639
        zeros_like_x = paddle.zeros_like(x)
        zeros_like_y = paddle.zeros_like(y)
        zeros_like_condition = paddle.zeros_like(condition)
        zeros_like_condition = paddle.cast(zeros_like_condition, x.dtype)
        cast_cond = paddle.cast(condition, x.dtype)

        broadcast_zeros = paddle.add(zeros_like_x, zeros_like_y)
        broadcast_zeros = paddle.add(broadcast_zeros, zeros_like_condition)
        broadcast_x = paddle.add(x, broadcast_zeros)
        broadcast_y = paddle.add(y, broadcast_zeros)
        broadcast_condition = paddle.add(cast_cond, broadcast_zeros)
        broadcast_condition = paddle.cast(broadcast_condition, 'bool')

J
Jiabin Yang 已提交
640 641 642
    if in_dygraph_mode():
        return _C_ops.final_state_where(broadcast_condition, broadcast_x,
                                        broadcast_y)
643
    else:
J
Jiabin Yang 已提交
644 645 646 647 648 649 650 651 652 653 654 655 656 657
        if _in_legacy_dygraph():
            return _C_ops.where(broadcast_condition, broadcast_x, broadcast_y)
        else:
            helper = LayerHelper("where", **locals())
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            helper.append_op(
                type='where',
                inputs={
                    'Condition': broadcast_condition,
                    'X': broadcast_x,
                    'Y': broadcast_y
                },
                outputs={'Out': [out]})
658

J
Jiabin Yang 已提交
659
            return out
660 661


C
Chengmo 已提交
662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
686
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
687
            int32, int64, float32, float64.
C
Chengmo 已提交
688
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
689 690 691
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
692
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
693 694 695 696 697 698

    Examples:

        .. code-block:: python

            import paddle
699 700 701 702 703 704 705 706 707 708 709

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
N
Noel 已提交
710
            print(out_z1)
711 712 713 714 715 716 717 718
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
N
Noel 已提交
719
            print(top_value)
720 721 722 723
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

N
Noel 已提交
724
            print(top_index)
725 726 727 728
            #[[3 2]
            # [3 2]
            # [3 2]]

N
Noel 已提交
729
            print(out_z2)
730 731 732
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
733

C
Chengmo 已提交
734
    """
J
Jiabin Yang 已提交
735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754
    if in_dygraph_mode():
        return _C_ops.final_state_index_sample(x, index)
    else:
        if _in_legacy_dygraph():
            return _C_ops.index_sample(x, index)
        else:
            helper = LayerHelper("index_sample", **locals())
            check_variable_and_dtype(x, 'x',
                                     ['float32', 'float64', 'int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                                     'paddle.tensor.search.index_sample')
            out = helper.create_variable_for_type_inference(dtype=x.dtype)

            helper.append_op(
                type='index_sample',
                inputs={'X': x,
                        'Index': index},
                outputs={'Out': out})
            return out
755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
776 777 778 779 780 781 782

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
783 784 785 786
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

H
hong 已提交
787 788 789 790
    if in_dygraph_mode():
        return _C_ops.final_state_masked_select(x, mask)

    if _in_legacy_dygraph():
W
wanghuancoder 已提交
791
        return _C_ops.masked_select(x, mask)
792 793 794 795 796 797 798 799 800 801 802

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

832
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
833
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
N
Noel 已提交
834
           print(value_1)
W
wawltor 已提交
835
           # [7]
N
Noel 已提交
836
           print(indices_1)
W
wawltor 已提交
837
           # [3] 
838
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
839
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
N
Noel 已提交
840
           print(value_2)
W
wawltor 已提交
841 842
           # [[7]
           #  [6]]
N
Noel 已提交
843
           print(indices_2)
W
wawltor 已提交
844 845 846
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
N
Noel 已提交
847
           print(value_3)
W
wawltor 已提交
848 849
           # [[7]
           #  [6]]
N
Noel 已提交
850
           print(indices_3)
W
wawltor 已提交
851 852 853
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
N
Noel 已提交
854
           print(value_4)
W
wawltor 已提交
855
           # [[2 6 5 7]]
N
Noel 已提交
856
           print(indices_4)
W
wawltor 已提交
857 858 859
           # [[1 1 0 0]]

    """
H
hong 已提交
860

H
hong 已提交
861 862 863 864 865 866
    if in_dygraph_mode():
        if axis == None:
            axis = -1
        out, indices = _C_ops.final_state_top_k(x, k, axis, largest, sorted)
        return out, indices

H
hong 已提交
867
    if _non_static_mode():
W
wawltor 已提交
868
        if axis is None:
W
wanghuancoder 已提交
869 870 871
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'largest', largest, 'sorted',
                                           sorted)
W
wawltor 已提交
872
        else:
W
wanghuancoder 已提交
873 874 875
            out, indices = _C_ops.top_k_v2(x, 'k',
                                           int(k), 'axis', axis, 'largest',
                                           largest, 'sorted', sorted)
W
wawltor 已提交
876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices
Y
Yanxing Shi 已提交
901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949


def searchsorted(sorted_sequence,
                 values,
                 out_int32=False,
                 right=False,
                 name=None):
    """
    This OP is used to find the index of the corresponding `sorted_sequence` in the innermost dimension based on the given `values`.

    Args:
        sorted_sequence(Tensor): An input N-D or 1-D tensor with type int32, int64, float32, float64. The value of the tensor monotonically increases in the innermost dimension. 
        values(Tensor): An input N-D tensor value with type int32, int64, float32, float64.
        out_int32(bool, optional): Data type of the output tensor which can be int32, int64. The default value is False, and it indicates that the output data type is int64.
        right(bool, optional): Find the upper or lower bounds of the sorted_sequence range in the innermost dimension based on the given `values`. If the value of the sorted_sequence is nan or inf, return the size of the innermost dimension.
                               The default value is False and it shows the lower bounds.  
        name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`.
        
    Returns:
        Tensor(the same sizes of the `values`), return the tensor of int32 if set :attr:`out_int32` is True, otherwise return the tensor of int64.  
    
    Examples:

        .. code-block:: python
    
            import paddle

            sorted_sequence = paddle.to_tensor([[1, 3, 5, 7, 9, 11],
                                                [2, 4, 6, 8, 10, 12]], dtype='int32')
            values = paddle.to_tensor([[3, 6, 9, 10], [3, 6, 9, 10]], dtype='int32')
            out1 = paddle.searchsorted(sorted_sequence, values)
            print(out1)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 2, 4, 4]])
            out2 = paddle.searchsorted(sorted_sequence, values, right=True)
            print(out2)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[2, 3, 5, 5],
            #         [1, 3, 4, 5]])
            sorted_sequence_1d = paddle.to_tensor([1, 3, 5, 7, 9, 11, 13])
            out3 = paddle.searchsorted(sorted_sequence_1d, values)     
            print(out3)
            # Tensor(shape=[2, 4], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #        [[1, 3, 4, 5],
            #         [1, 3, 4, 5]])
            
    """

Z
zhiboniu 已提交
950
    if paddle.in_dynamic_mode():
Y
Yanxing Shi 已提交
951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972
        return _C_ops.searchsorted(sorted_sequence, values, "out_int32",
                                   out_int32, "right", right)

    check_variable_and_dtype(sorted_sequence, 'SortedSequence',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')
    check_variable_and_dtype(values, 'Values',
                             ['float32', 'float64', 'int32', 'int64'],
                             'paddle.searchsorted')

    helper = LayerHelper('searchsorted', **locals())
    out_type = 'int32' if out_int32 else 'int64'
    out = helper.create_variable_for_type_inference(dtype=out_type)
    helper.append_op(
        type='searchsorted',
        inputs={'SortedSequence': sorted_sequence,
                "Values": values},
        outputs={'Out': out},
        attrs={"out_int32": out_int32,
               "right": right})

    return out
973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012


def kthvalue(x, k, axis=None, keepdim=False, name=None):
    """
    This OP is used to find values and indices of the k-th smallest at the axis.

    Args:
        x(Tensor): A N-D Tensor with type float32, float64, int32, int64.
        k(int): The k for the k-th smallest number to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. The default is None. And if the axis is None, it will computed as -1 by default.
        keepdim(bool, optional): Whether to keep the given axis in output. If it is True, the dimensions will be same as input x and with size one in the axis. Otherwise the output dimentions is one fewer than x since the axis is squeezed. Default is False.
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.
   
    Examples:

        .. code-block:: python
    
            import paddle
            
            x = paddle.randn((2,3,2))
            # Tensor(shape=[2, 3, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            #       [[[ 0.22954939, -0.01296274],
            #         [ 1.17135799, -0.34493217],
            #         [-0.19550551, -0.17573971]],
            #
            #        [[ 0.15104349, -0.93965352],
            #         [ 0.14745511,  0.98209465],
            #         [ 0.10732264, -0.55859774]]])           
            y = paddle.kthvalue(x, 2, 1)    
            # (Tensor(shape=[2, 2], dtype=float32, place=CUDAPlace(0), stop_gradient=True,
            # [[ 0.22954939, -0.17573971],
            #  [ 0.14745511, -0.55859774]]), Tensor(shape=[2, 2], dtype=int64, place=CUDAPlace(0), stop_gradient=True,
            #  [[0, 2],
            #  [1, 2]]))
    """
1013
    if _non_static_mode():
1014
        if axis is not None:
1015 1016 1017 1018
            if _in_legacy_dygraph():
                return _C_ops.kthvalue(x, 'k', k, "axis", axis, "keepdim",
                                       keepdim)
            return _C_ops.final_state_kthvalue(x, k, axis, keepdim)
1019
        else:
1020 1021 1022
            if _in_legacy_dygraph():
                return _C_ops.kthvalue(x, 'k', k, "keepdim", keepdim)
            return _C_ops.final_state_kthvalue(x, k, -1, keepdim)
1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039

    helper = LayerHelper("kthvalue", **locals())
    inputs = {"X": [x]}
    attrs = {'k': k}
    if axis is not None:
        attrs['axis'] = axis
    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="kthvalue",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices