search.py 27.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
C
Chengmo 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
18
from ..fluid import core, layers
19

20 21 22 23 24 25
# TODO: define searching & indexing functions of a tensor  
from ..fluid.layers import argmin  #DEFINE_ALIAS
from ..fluid.layers import has_inf  #DEFINE_ALIAS
from ..fluid.layers import has_nan  #DEFINE_ALIAS
from ..fluid.layers import topk  #DEFINE_ALIAS

26 27
__all__ = [
    'argmax',
28 29 30 31
    'argmin',
    'argsort',
    'has_inf',
    'has_nan',
32
    'masked_select',
33
    'topk',
34
    'where',
35 36
    'index_select',
    'nonzero',
C
Chengmo 已提交
37
    'sort',
38
    'index_sample',
39 40 41
]

from paddle.common_ops_import import *
42 43


44 45 46 47 48
def argsort(x, axis=-1, descending=False, name=None):
    """
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort

W
wawltor 已提交
49
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            
73
            paddle.disable_static()
74 75 76 77 78 79
            input_array = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
80
            x = paddle.to_variable(input_array)
81 82 83 84
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
            print(out1.numpy())
W
wawltor 已提交
85 86 87
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
88
            # [[1 3 2 0]
W
wawltor 已提交
89 90
            #  [0 1 2 3]
            #  [2 0 3 1]]]
91
            print(out2.numpy())
W
wawltor 已提交
92 93 94 95 96 97
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
98
            print(out3.numpy())
W
wawltor 已提交
99 100 101 102 103 104
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    """
    if in_dygraph_mode():
        _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


W
wawltor 已提交
128
def argmax(x, axis=None, dtype=None, keepdim=False, name=None):
129 130 131 132 133
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
134
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
135 136
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
137 138 139
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        dtype(str): Data type of the output tensor which can
140 141
                    be int32, int64. The default value is None, and it will
                    return the int64 indices.
W
wawltor 已提交
142
        keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
143 144 145
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
146 147

    Returns:
W
wawltor 已提交
148
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
149 150 151 152 153

    Examples:
        .. code-block:: python

            import numpy as np
W
wawltor 已提交
154
            import paddle
155

W
wawltor 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168
            paddle.disable_static()
            data = np.array([[5,8,9,5],
                             [0,0,1,7],
                             [6,9,2,4]])
            x =  paddle.to_variable(data)
            out1 = paddle.argmax(x)
            print(out1.numpy()) # 2
            out2 = paddle.argmax(x, axis=1)
            print(out2.numpy()) 
            # [2 3 1]
            out3 = paddle.argmax(x, axis=-1)
            print(out3.numpy()) 
            # [2 3 1]
169
    """
W
wawltor 已提交
170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

    if in_dygraph_mode():
        if dtype != None:
            var_dtype = convert_np_dtype_to_dtype_(dtype)
            out = core.ops.arg_max(x, 'axis', axis, 'dtype', var_dtype,
                                   'keepdim', keepdim, 'flatten', flatten)
        else:
            out = core.ops.arg_max(x, 'axis', axis, 'keepdim', keepdim,
                                   'flatten', flatten)
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
189 190 191
    var_dtype = None
    attrs = {}
    if dtype is not None:
W
wawltor 已提交
192 193 194 195
        if dtype not in ['int32', 'int64']:
            raise ValueError(
                "The value of 'dtype' in argmax op must be int32, int64, but received of {}".
                format(dtype))
196 197 198 199
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = VarDesc.VarType.INT64
W
wawltor 已提交
200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253

    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


def argmin(x, axis=None, dtype=None, keepdim=False, name=None):
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        dtype(str): Data type of the output tensor which can
                    be int32, int64. The default value is None, and it will
                    return the int64 indices.
        keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import numpy as np
            import paddle

            paddle.disable_static()
            data = np.array([[5,8,9,5],
                             [0,0,1,7],
                             [6,9,2,4]])
            x =  paddle.to_variable(data)
            out1 = paddle.argmin(x)
            print(out1.numpy()) # 4
            out2 = paddle.argmin(x, axis=1)
            print(out2.numpy()) 
            # [0 0 2]
            out3 = paddle.argmin(x, axis=-1)
            print(out3.numpy()) 
            # [0 0 2]
    """
    flatten = False
254
    if axis is None:
W
wawltor 已提交
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
        flatten = True
        axis = 0

    if in_dygraph_mode():
        if dtype != None:
            var_dtype = convert_np_dtype_to_dtype_(dtype)
            out = core.ops.arg_min(x, 'axis', axis, 'dtype', var_dtype,
                                   'keepdim', keepdim, 'flatten', flatten)
        else:
            out = core.ops.arg_min(x, 'axis', axis, 'keepdim', keepdim,
                                   'flatten', flatten)
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
    var_dtype = None
    attrs = {}
    if dtype is not None:
        if dtype not in ['int32', 'int64']:
            raise ValueError(
                "The value of 'dtype' in argmin op must be int32, int64, but received of {}".
                format(dtype))
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = VarDesc.VarType.INT64

    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
286
    attrs['axis'] = axis
W
wawltor 已提交
287
    attrs['flatten'] = flatten
288
    helper.append_op(
W
wawltor 已提交
289
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
290 291
    out.stop_gradient = True
    return out
292 293


294
def index_select(x, index, axis=0, name=None):
295
    """
296
	:alias_main: paddle.index_select
297
	:alias: paddle.tensor.index_select, paddle.tensor.search.index_select
S
swtkiwi 已提交
298

299 300 301 302
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
303

304
    Args:
305 306 307
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
308 309 310
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
311 312

    Returns:
313
        Tensor: A Tensor with same data type as ``x``.
314 315
    
    Raises:
316 317
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of  float32, float64, int32 and int64.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be int32 or int64.
C
Chengmo 已提交
318

319 320
    Examples:
        .. code-block:: python
321
            
322 323 324
            import paddle
            import numpy as np

325
            paddle.disable_static()  # Now we are in imperative mode
326 327 328 329 330
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                             [5.0, 6.0, 7.0, 8.0],
                             [9.0, 10.0, 11.0, 12.0]])
            data_index = np.array([0, 1, 1]).astype('int32')

W
wangchaochaohu 已提交
331 332
            x = paddle.to_tensor(data)
            index = paddle.to_tensor(data_index)
333 334 335 336 337 338 339 340
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
341
    """
342

343
    if in_dygraph_mode():
344
        return core.ops.index_select(x, index, 'dim', axis)
345

346 347 348
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
349
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
350
                             'paddle.tensor.search.index_select')
351

352
    out = helper.create_variable_for_type_inference(x.dtype)
353 354 355

    helper.append_op(
        type='index_select',
356
        inputs={'X': x,
357 358
                'Index': index},
        outputs={'Out': out},
359
        attrs={'dim': axis})
360 361 362 363 364
    return out


def nonzero(input, as_tuple=False):
    """
365 366
	:alias_main: paddle.nonzero
	:alias: paddle.nonzero,paddle.tensor.nonzero,paddle.tensor.search.nonzero
S
swtkiwi 已提交
367

368 369 370 371 372 373 374
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
375

376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449
    Args:
        inputs (Variable): The input tensor variable.
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
        Variable. The data type is int64.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            data1 = np.array([[1.0, 0.0, 0.0],
                              [0.0, 2.0, 0.0],
                              [0.0, 0.0, 3.0]])
            data2 = np.array([0.0, 1.0, 0.0, 3.0])
            data3 = np.array([0.0, 0.0, 0.0])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(data1)
                x2 = fluid.dygraph.to_variable(data2)
                x3 = fluid.dygraph.to_variable(data3)
                out_z1 = paddle.nonzero(x1)
                print(out_z1.numpy())
                #[[0 0]
                # [1 1]
                # [2 2]]
                out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
                for out in out_z1_tuple:
                    print(out.numpy())
                #[[0]
                # [1]
                # [2]]
                #[[0]
                # [1]
                # [2]]
                out_z2 = paddle.nonzero(x2)
                print(out_z2.numpy())
                #[[1]
                # [3]]
                out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
                for out in out_z2_tuple:
                    print(out.numpy())
                #[[1]
                # [3]]
                out_z3 = paddle.nonzero(x3)
                print(out_z3.numpy())
                #[]
                out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
                for out in out_z3_tuple:
                    print(out.numpy())
                #[]                    
    """
    list_out = []
    shape = input.shape
    rank = len(shape)

    if in_dygraph_mode():
        outs = core.ops.where_index(input)
    else:
        outs = layers.where(input)

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
                layers.slice(
                    outs, axes=[rank - 1], starts=[i], ends=[i + 1]))
        return tuple(list_out)


450
def sort(x, axis=-1, descending=False, name=None):
451
    """
452 453
	:alias_main: paddle.sort
	:alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort
S
swtkiwi 已提交
454

W
wawltor 已提交
455
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
456

457
    Args:
458
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
459 460 461 462 463 464 465 466 467 468 469
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
470
        Tensor: sorted tensor(with the same shape and data type as ``x``).
471 472 473 474
    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
475
            
476
            paddle.disable_static()
477
            input_array = np.array([[[5,8,9,5],
478 479 480 481 482
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
483
            x = paddle.to_variable(input_array)
484 485 486
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
W
wawltor 已提交
487 488 489 490 491 492 493 494
            print(out1.numpy())
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
            print(out2.numpy())
495
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
496 497 498 499 500 501
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
            print(out3.numpy())
502
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
503 504 505 506 507
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
508
    """
509
    if in_dygraph_mode():
W
wawltor 已提交
510 511
        out, _ = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return out
512
    helper = LayerHelper("sort", **locals())
513 514
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
515 516 517 518
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
519
        inputs={'X': x},
520 521 522 523
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
524
    return out
C
Chengmo 已提交
525 526


527
def where(condition, x, y, name=None):
528
    """
529 530
	:alias_main: paddle.where
	:alias: paddle.where,paddle.tensor.where,paddle.tensor.search.where
S
swtkiwi 已提交
531

532 533 534
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

    .. math::
C
Chengmo 已提交
535

536 537 538 539 540
      out_i =
      \\begin{cases}
      x_i, \quad  \\text{if}  \\ condition_i \\  is \\ True \\\\
      y_i, \quad  \\text{if}  \\ condition_i \\  is \\ False \\\\
      \\end{cases}
C
Chengmo 已提交
541

542

543
    Args:
544 545 546 547 548 549 550 551
        condition(Variable): The condition to choose x or y.
        x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64.
        y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64.

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

552
    Returns:
553 554
        Variable: A Tensor with the same data dype as x. 

555 556 557
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
558
          import paddle
559 560
          import numpy as np
          import paddle.fluid as fluid
561 562 563

          x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
          y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
564 565 566 567 568

          with fluid.dygraph.guard():
              x = fluid.dygraph.to_variable(x_i)
              y = fluid.dygraph.to_variable(y_i)
              out = paddle.where(x>1, x, y)
569 570 571

          print(out.numpy())
          #out: [1.0, 1.0, 3.2, 1.2]
572 573
    """
    if not in_dygraph_mode():
574
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
575
        check_variable_and_dtype(
576
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
577
        check_variable_and_dtype(
578
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
579

580 581 582
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if x_shape == y_shape:
583
        if in_dygraph_mode():
584
            return core.ops.where(condition, x, y)
585 586
        else:
            helper = LayerHelper("where", **locals())
G
GaoWei8 已提交
587
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
588 589 590

            helper.append_op(
                type='where',
591 592 593
                inputs={'Condition': condition,
                        'X': x,
                        'Y': y},
594 595 596
                outputs={'Out': [out]})
            return out
    else:
597 598 599 600
        cond_int = layers.cast(condition, x.dtype)
        cond_not_int = layers.cast(layers.logical_not(condition), x.dtype)
        out1 = layers.elementwise_mul(x, cond_int)
        out2 = layers.elementwise_mul(y, cond_not_int)
601 602 603 604
        out = layers.elementwise_add(out1, out2)
        return out


C
Chengmo 已提交
605 606
def index_sample(x, index):
    """
607 608
	:alias_main: paddle.index_sample
	:alias: paddle.index_sample,paddle.tensor.index_sample,paddle.tensor.search.index_sample
S
swtkiwi 已提交
609

C
Chengmo 已提交
610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
        x (Variable): The source input tensor with 2-D shape. Supported data type is 
            int32, int64, float32, float64.
        index (Variable): The index input tensor with 2-D shape, first dimension should be same with X. 
            Data type is int32 or int64.

    Returns:
        output (Variable): The output is a tensor with the same shape as index.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

C
Chengmo 已提交
648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [9.0, 10.0, 11.0, 12.0]]).astype('float32')

            data_index = np.array([[0, 1, 2],
                                    [1, 2, 3],
                                    [0, 0, 0]]).astype('int32')

            target_data = np.array([[100, 200, 300, 400],
                                    [500, 600, 700, 800],
                                    [900, 1000, 1100, 1200]]).astype('int32')

            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(data)
                index = fluid.dygraph.to_variable(data_index)
                target = fluid.dygraph.to_variable(target_data)

                out_z1 = paddle.index_sample(x, index)
                print(out_z1.numpy())
                #[[1. 2. 3.]
                # [6. 7. 8.]
                # [9. 9. 9.]]

                # Use the index of the maximum value by topk op
                # get the value of the element of the corresponding index in other tensors
                top_value, top_index = fluid.layers.topk(x, k=2)
                out_z2 = paddle.index_sample(target, top_index)
                print(top_value.numpy())
                #[[ 4.  3.]
                # [ 8.  7.]
                # [12. 11.]]

                print(top_index.numpy())
                #[[3 2]
                # [3 2]
                # [3 2]]

                print(out_z2.numpy())
                #[[ 400  300]
                # [ 800  700]
                # [1200 1100]]

C
Chengmo 已提交
690 691 692 693 694 695 696 697 698 699 700 701 702 703 704

    """
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Raises:
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of  float32, float64, int32 and int64.
        TypeError: ``mask`` must be a Tensor and the data type of ``mask`` must be bool.

    Examples:

        .. code-block:: python

            import paddle
            import numpy as np
            
            paddle.disable_static()
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [9.0, 10.0, 11.0, 12.0]]).astype('float32')
            
            mask_data = np.array([[True, False, False, False],
                            [True, True, False, False],
                            [True, False, False, False]]).astype('bool')
            x = paddle.to_tensor(data)
            mask = paddle.to_tensor(mask_data)
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

    if in_dygraph_mode():
        return core.ops.masked_select(x, mask)

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out