search.py 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
C
Chengmo 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
18
from ..fluid import core, layers
19

20 21 22 23 24 25
# TODO: define searching & indexing functions of a tensor  
from ..fluid.layers import argmin  #DEFINE_ALIAS
from ..fluid.layers import has_inf  #DEFINE_ALIAS
from ..fluid.layers import has_nan  #DEFINE_ALIAS
from ..fluid.layers import topk  #DEFINE_ALIAS

26 27
__all__ = [
    'argmax',
28 29 30 31 32 33
    'argmin',
    'argsort',
    'has_inf',
    'has_nan',
    #       'masked_select',
    'topk',
34
    'where',
35 36
    'index_select',
    'nonzero',
C
Chengmo 已提交
37 38
    'sort',
    'index_sample'
39 40 41
]

from paddle.common_ops_import import *
42 43


44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129
def argsort(x, axis=-1, descending=False, name=None):
    """
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort

    This OP sorts the input along the given axis, and returns sorted output
    data Varibale and its corresponding index Variable with the same shape as ``x``.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
        .. code-block:: python
            import paddle
            import paddle.imperative as imperative 
            import numpy as np
            
            paddle.enable_imperative()
            input_array = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
            x = imperative.to_variable(input_array)
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
            print(out1.numpy())
	    #[[[0 3 1 2]
	    #  [0 1 2 3]
	    #  [2 3 0 1]]
            # [[1 3 2 0]
	    #  [0 1 2 3]
	    #  [2 0 3 1]]]
            print(out2.numpy())
	    #[[[0 1 1 1]
	    #  [0 0 0 0]
	    #  [1 1 1 0]]
	    # [[1 0 0 0]
	    #  [1 1 1 1]
	    #  [0 0 0 1]]]
            print(out3.numpy())
	    #[[[1 1 1 2]
	    #  [0 0 2 0]
	    #  [2 2 0 1]]
	    # [[2 0 2 0]
	    #  [1 1 0 2]
	    #  [0 2 1 1]]]
    """
    if in_dygraph_mode():
        _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


130 131
def argmax(input, axis=None, dtype=None, out=None, keepdims=False, name=None):
    """
132 133
	:alias_main: paddle.argmax
	:alias: paddle.argmax,paddle.tensor.argmax,paddle.tensor.search.argmax
S
swtkiwi 已提交
134

135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(input). when axis<0, it works the same way
            as axis+R. Default is None, it will use the last dim to select indices of max value.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
                    be int32, int64. The default value is None, and it will
                    return the int64 indices.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result. Defalut is None.
        keepdims(bool, optional): Keep the axis that do the select max.
151 152 153
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220

    Returns:
        Variable: A Tensor with data type int64.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = paddle.argmax(input=x, axis=-1)
                out2 = paddle.argmax(input=x, axis=0)
                out3 = paddle.argmax(input=x, axis=1)
                out4 = paddle.argmax(input=x, axis=2)
                out5 = paddle.argmax(input=x, axis=2, keepdims=True)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out5.numpy())
                #array([[[2],
                #        [3],
                #        [1]],
                #       [[0],
                #        [3],
                #        [1]]])
    """
    helper = LayerHelper("arg_max", **locals())
    var_dtype = None
    attrs = {}
    if dtype is not None:
        check_dtype(dtype, 'create data type', ['int32', 'int64'], 'arg_max')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = VarDesc.VarType.INT64
    if out is None:
        out = helper.create_variable_for_type_inference(var_dtype)
    if axis is None:
        axis = -1
    attrs['keepdims'] = keepdims
    attrs['axis'] = axis
    helper.append_op(
        type='arg_max',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs=attrs)
    out.stop_gradient = True
    return out
221 222


223
def index_select(x, index, axis=0, name=None):
224
    """
225
	:alias_main: paddle.index_select
226
	:alias: paddle.tensor.index_select, paddle.tensor.search.index_select
S
swtkiwi 已提交
227

228 229 230 231
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
232

233
    Args:
234 235 236
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
237 238 239
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
240 241

    Returns:
242
        Tensor: A Tensor with same data type as ``x``.
243 244
    
    Raises:
245 246
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of  float32, float64, int32 and int64.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be int32 or int64.
C
Chengmo 已提交
247

248 249
    Examples:
        .. code-block:: python
250
            
251 252 253
            import paddle
            import numpy as np

254
            paddle.enable_imperative()  # Now we are in imperative mode
255 256 257 258 259
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                             [5.0, 6.0, 7.0, 8.0],
                             [9.0, 10.0, 11.0, 12.0]])
            data_index = np.array([0, 1, 1]).astype('int32')

260 261 262 263 264 265 266 267 268 269
            x = paddle.imperative.to_variable(data)
            index = paddle.imperative.to_variable(data_index)
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
270
    """
271

272
    if in_dygraph_mode():
273
        return core.ops.index_select(x, index, 'dim', axis)
274

275 276 277
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
278
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
279
                             'paddle.tensor.search.index_select')
280

281
    out = helper.create_variable_for_type_inference(x.dtype)
282 283 284

    helper.append_op(
        type='index_select',
285
        inputs={'X': x,
286 287
                'Index': index},
        outputs={'Out': out},
288
        attrs={'dim': axis})
289 290 291 292 293
    return out


def nonzero(input, as_tuple=False):
    """
294 295
	:alias_main: paddle.nonzero
	:alias: paddle.nonzero,paddle.tensor.nonzero,paddle.tensor.search.nonzero
S
swtkiwi 已提交
296

297 298 299 300 301 302 303
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
304

305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
    Args:
        inputs (Variable): The input tensor variable.
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
        Variable. The data type is int64.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            data1 = np.array([[1.0, 0.0, 0.0],
                              [0.0, 2.0, 0.0],
                              [0.0, 0.0, 3.0]])
            data2 = np.array([0.0, 1.0, 0.0, 3.0])
            data3 = np.array([0.0, 0.0, 0.0])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(data1)
                x2 = fluid.dygraph.to_variable(data2)
                x3 = fluid.dygraph.to_variable(data3)
                out_z1 = paddle.nonzero(x1)
                print(out_z1.numpy())
                #[[0 0]
                # [1 1]
                # [2 2]]
                out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
                for out in out_z1_tuple:
                    print(out.numpy())
                #[[0]
                # [1]
                # [2]]
                #[[0]
                # [1]
                # [2]]
                out_z2 = paddle.nonzero(x2)
                print(out_z2.numpy())
                #[[1]
                # [3]]
                out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
                for out in out_z2_tuple:
                    print(out.numpy())
                #[[1]
                # [3]]
                out_z3 = paddle.nonzero(x3)
                print(out_z3.numpy())
                #[]
                out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
                for out in out_z3_tuple:
                    print(out.numpy())
                #[]                    
    """
    list_out = []
    shape = input.shape
    rank = len(shape)

    if in_dygraph_mode():
        outs = core.ops.where_index(input)
    else:
        outs = layers.where(input)

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
                layers.slice(
                    outs, axes=[rank - 1], starts=[i], ends=[i + 1]))
        return tuple(list_out)


379
def sort(x, axis=-1, descending=False, name=None):
380
    """
381 382
	:alias_main: paddle.sort
	:alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort
S
swtkiwi 已提交
383

384
    This OP sorts the input along the given axis, and returns sorted output
385
    data Tensor and its corresponding index Tensor with the same shape as ``x``.
C
Chengmo 已提交
386

387
    Args:
388
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
389 390 391 392 393 394 395 396 397 398 399
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
400 401
        tuple: A tuple of sorted data tensor(with the same shape and data
        type as ``x``) and the sorted indices(with the same shape as ``x``
402 403 404 405
        and with data type int64).
    Examples:
        .. code-block:: python
            import paddle
406
            import paddle.imperative as imperative 
407
            import numpy as np
408 409 410
            
            paddle.enable_imperative()
            input_array = np.array([[[5,8,9,5],
411 412 413 414 415
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447
            x = imperative.to_variable(input_array)
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
            print(out1[0].numpy())
	    #[[[5. 5. 8. 9.]
	    #  [0. 0. 1. 7.]
	    #  [2. 4. 6. 9.]]
	    # [[2. 2. 4. 5.]
	    #  [4. 7. 7. 9.]
	    #  [0. 1. 6. 7.]]]
            print(out1[1].numpy())
	    #[[[0 3 1 2]
	    #  [0 1 2 3]
	    #  [2 3 0 1]]
            # [[1 3 2 0]
	    #  [0 1 2 3]
	    #  [2 0 3 1]]]
            print(out2[0].numpy())
            #[[[5. 2. 4. 2.]
	    #  [0. 0. 1. 7.]
	    #  [1. 7. 0. 4.]]
	    # [[5. 8. 9. 5.]
	    #  [4. 7. 7. 9.]
	    #  [6. 9. 2. 6.]]]
            print(out3[0].numpy())
            #[[[0. 0. 1. 4.]
	    #  [5. 8. 2. 5.]
	    #  [6. 9. 9. 7.]]
	    # [[1. 2. 0. 2.]
	    #  [4. 7. 4. 6.]
	    #  [5. 7. 7. 9.]]]
448
    """
449 450 451
    if in_dygraph_mode():
        out, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return out, ids
452
    helper = LayerHelper("sort", **locals())
453 454
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
455 456 457 458
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
459
        inputs={'X': x},
460 461 462 463 464
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return out, ids
C
Chengmo 已提交
465 466


467
def where(condition, x, y, name=None):
468
    """
469 470
	:alias_main: paddle.where
	:alias: paddle.where,paddle.tensor.where,paddle.tensor.search.where
S
swtkiwi 已提交
471

472 473 474
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

    .. math::
C
Chengmo 已提交
475

476 477 478 479 480
      out_i =
      \\begin{cases}
      x_i, \quad  \\text{if}  \\ condition_i \\  is \\ True \\\\
      y_i, \quad  \\text{if}  \\ condition_i \\  is \\ False \\\\
      \\end{cases}
C
Chengmo 已提交
481

482

483
    Args:
484 485 486 487 488 489 490 491
        condition(Variable): The condition to choose x or y.
        x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64.
        y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64.

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

492
    Returns:
493 494
        Variable: A Tensor with the same data dype as x. 

495 496 497
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
498
          import paddle
499 500
          import numpy as np
          import paddle.fluid as fluid
501 502 503

          x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
          y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
504 505 506 507 508

          with fluid.dygraph.guard():
              x = fluid.dygraph.to_variable(x_i)
              y = fluid.dygraph.to_variable(y_i)
              out = paddle.where(x>1, x, y)
509 510 511

          print(out.numpy())
          #out: [1.0, 1.0, 3.2, 1.2]
512 513
    """
    if not in_dygraph_mode():
514
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
515
        check_variable_and_dtype(
516
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
517
        check_variable_and_dtype(
518
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
519

520 521 522
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if x_shape == y_shape:
523
        if in_dygraph_mode():
524
            return core.ops.where(condition, x, y)
525 526
        else:
            helper = LayerHelper("where", **locals())
G
GaoWei8 已提交
527
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
528 529 530

            helper.append_op(
                type='where',
531 532 533
                inputs={'Condition': condition,
                        'X': x,
                        'Y': y},
534 535 536
                outputs={'Out': [out]})
            return out
    else:
537 538 539 540
        cond_int = layers.cast(condition, x.dtype)
        cond_not_int = layers.cast(layers.logical_not(condition), x.dtype)
        out1 = layers.elementwise_mul(x, cond_int)
        out2 = layers.elementwise_mul(y, cond_not_int)
541 542 543 544
        out = layers.elementwise_add(out1, out2)
        return out


C
Chengmo 已提交
545 546
def index_sample(x, index):
    """
547 548
	:alias_main: paddle.index_sample
	:alias: paddle.index_sample,paddle.tensor.index_sample,paddle.tensor.search.index_sample
S
swtkiwi 已提交
549

C
Chengmo 已提交
550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
        x (Variable): The source input tensor with 2-D shape. Supported data type is 
            int32, int64, float32, float64.
        index (Variable): The index input tensor with 2-D shape, first dimension should be same with X. 
            Data type is int32 or int64.

    Returns:
        output (Variable): The output is a tensor with the same shape as index.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

C
Chengmo 已提交
588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [9.0, 10.0, 11.0, 12.0]]).astype('float32')

            data_index = np.array([[0, 1, 2],
                                    [1, 2, 3],
                                    [0, 0, 0]]).astype('int32')

            target_data = np.array([[100, 200, 300, 400],
                                    [500, 600, 700, 800],
                                    [900, 1000, 1100, 1200]]).astype('int32')

            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(data)
                index = fluid.dygraph.to_variable(data_index)
                target = fluid.dygraph.to_variable(target_data)

                out_z1 = paddle.index_sample(x, index)
                print(out_z1.numpy())
                #[[1. 2. 3.]
                # [6. 7. 8.]
                # [9. 9. 9.]]

                # Use the index of the maximum value by topk op
                # get the value of the element of the corresponding index in other tensors
                top_value, top_index = fluid.layers.topk(x, k=2)
                out_z2 = paddle.index_sample(target, top_index)
                print(top_value.numpy())
                #[[ 4.  3.]
                # [ 8.  7.]
                # [12. 11.]]

                print(top_index.numpy())
                #[[3 2]
                # [3 2]
                # [3 2]]

                print(out_z2.numpy())
                #[[ 400  300]
                # [ 800  700]
                # [1200 1100]]

C
Chengmo 已提交
630 631 632 633 634 635 636 637 638 639 640 641 642 643 644

    """
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out