search.py 22.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
C
Chengmo 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
18
from ..fluid import core, layers
19

20 21 22 23 24 25
# TODO: define searching & indexing functions of a tensor  
from ..fluid.layers import argmin  #DEFINE_ALIAS
from ..fluid.layers import has_inf  #DEFINE_ALIAS
from ..fluid.layers import has_nan  #DEFINE_ALIAS
from ..fluid.layers import topk  #DEFINE_ALIAS

26 27
__all__ = [
    'argmax',
28 29 30 31 32 33
    'argmin',
    'argsort',
    'has_inf',
    'has_nan',
    #       'masked_select',
    'topk',
34
    'where',
35 36
    'index_select',
    'nonzero',
C
Chengmo 已提交
37 38
    'sort',
    'index_sample'
39 40 41
]

from paddle.common_ops_import import *
42 43


44 45 46 47 48
def argsort(x, axis=-1, descending=False, name=None):
    """
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort

W
wawltor 已提交
49
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
            
73
            paddle.disable_static()
74 75 76 77 78 79
            input_array = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
80
            x = paddle.to_variable(input_array)
81 82 83 84
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
            print(out1.numpy())
W
wawltor 已提交
85 86 87
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
88
            # [[1 3 2 0]
W
wawltor 已提交
89 90
            #  [0 1 2 3]
            #  [2 0 3 1]]]
91
            print(out2.numpy())
W
wawltor 已提交
92 93 94 95 96 97
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
98
            print(out3.numpy())
W
wawltor 已提交
99 100 101 102 103 104
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    """
    if in_dygraph_mode():
        _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


128 129
def argmax(input, axis=None, dtype=None, out=None, keepdims=False, name=None):
    """
130 131
	:alias_main: paddle.argmax
	:alias: paddle.argmax,paddle.tensor.argmax,paddle.tensor.search.argmax
S
swtkiwi 已提交
132

133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
        input(Variable): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(input). when axis<0, it works the same way
            as axis+R. Default is None, it will use the last dim to select indices of max value.
        dtype(np.dtype|core.VarDesc.VarType|str): Data type of the output tensor which can
                    be int32, int64. The default value is None, and it will
                    return the int64 indices.
        out(Variable, optional): Optional output which can be any created 
            Variable that meets the requirements to store the result of operation.
            if out is None, a new Varibale will be create to store the result. Defalut is None.
        keepdims(bool, optional): Keep the axis that do the select max.
149 150 151
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218

    Returns:
        Variable: A Tensor with data type int64.

    Examples:
        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

            in1 = np.array([[[5,8,9,5],
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]])
            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(in1)
                out1 = paddle.argmax(input=x, axis=-1)
                out2 = paddle.argmax(input=x, axis=0)
                out3 = paddle.argmax(input=x, axis=1)
                out4 = paddle.argmax(input=x, axis=2)
                out5 = paddle.argmax(input=x, axis=2, keepdims=True)
                print(out1.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out2.numpy())
                # [[0 0 0 0]
                #  [1 1 1 1]
                #  [0 0 0 1]]
                print(out3.numpy())
                # [[2 2 0 1]
                #  [0 1 1 1]]
                print(out4.numpy())
                # [[2 3 1]
                #  [0 3 1]]
                print(out5.numpy())
                #array([[[2],
                #        [3],
                #        [1]],
                #       [[0],
                #        [3],
                #        [1]]])
    """
    helper = LayerHelper("arg_max", **locals())
    var_dtype = None
    attrs = {}
    if dtype is not None:
        check_dtype(dtype, 'create data type', ['int32', 'int64'], 'arg_max')
        var_dtype = convert_np_dtype_to_dtype_(dtype)
        attrs["dtype"] = var_dtype
    else:
        var_dtype = VarDesc.VarType.INT64
    if out is None:
        out = helper.create_variable_for_type_inference(var_dtype)
    if axis is None:
        axis = -1
    attrs['keepdims'] = keepdims
    attrs['axis'] = axis
    helper.append_op(
        type='arg_max',
        inputs={'X': input},
        outputs={'Out': [out]},
        attrs=attrs)
    out.stop_gradient = True
    return out
219 220


221
def index_select(x, index, axis=0, name=None):
222
    """
223
	:alias_main: paddle.index_select
224
	:alias: paddle.tensor.index_select, paddle.tensor.search.index_select
S
swtkiwi 已提交
225

226 227 228 229
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
230

231
    Args:
232 233 234
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
235 236 237
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
238 239

    Returns:
240
        Tensor: A Tensor with same data type as ``x``.
241 242
    
    Raises:
243 244
        TypeError: ``x`` must be a Tensor and the data type of ``x`` must be one of  float32, float64, int32 and int64.
        TypeError: ``index`` must be a Tensor and the data type of ``index`` must be int32 or int64.
C
Chengmo 已提交
245

246 247
    Examples:
        .. code-block:: python
248
            
249 250 251
            import paddle
            import numpy as np

252
            paddle.disable_static()  # Now we are in imperative mode
253 254 255 256 257
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                             [5.0, 6.0, 7.0, 8.0],
                             [9.0, 10.0, 11.0, 12.0]])
            data_index = np.array([0, 1, 1]).astype('int32')

258 259
            x = paddle.to_variable(data)
            index = paddle.to_variable(data_index)
260 261 262 263 264 265 266 267
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
268
    """
269

270
    if in_dygraph_mode():
271
        return core.ops.index_select(x, index, 'dim', axis)
272

273 274 275
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
276
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
277
                             'paddle.tensor.search.index_select')
278

279
    out = helper.create_variable_for_type_inference(x.dtype)
280 281 282

    helper.append_op(
        type='index_select',
283
        inputs={'X': x,
284 285
                'Index': index},
        outputs={'Out': out},
286
        attrs={'dim': axis})
287 288 289 290 291
    return out


def nonzero(input, as_tuple=False):
    """
292 293
	:alias_main: paddle.nonzero
	:alias: paddle.nonzero,paddle.tensor.nonzero,paddle.tensor.search.nonzero
S
swtkiwi 已提交
294

295 296 297 298 299 300 301
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
302

303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
    Args:
        inputs (Variable): The input tensor variable.
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
        Variable. The data type is int64.

    Examples:
        .. code-block:: python
            import paddle
            import paddle.fluid as fluid
            import numpy as np

            data1 = np.array([[1.0, 0.0, 0.0],
                              [0.0, 2.0, 0.0],
                              [0.0, 0.0, 3.0]])
            data2 = np.array([0.0, 1.0, 0.0, 3.0])
            data3 = np.array([0.0, 0.0, 0.0])
            with fluid.dygraph.guard():
                x1 = fluid.dygraph.to_variable(data1)
                x2 = fluid.dygraph.to_variable(data2)
                x3 = fluid.dygraph.to_variable(data3)
                out_z1 = paddle.nonzero(x1)
                print(out_z1.numpy())
                #[[0 0]
                # [1 1]
                # [2 2]]
                out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
                for out in out_z1_tuple:
                    print(out.numpy())
                #[[0]
                # [1]
                # [2]]
                #[[0]
                # [1]
                # [2]]
                out_z2 = paddle.nonzero(x2)
                print(out_z2.numpy())
                #[[1]
                # [3]]
                out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
                for out in out_z2_tuple:
                    print(out.numpy())
                #[[1]
                # [3]]
                out_z3 = paddle.nonzero(x3)
                print(out_z3.numpy())
                #[]
                out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
                for out in out_z3_tuple:
                    print(out.numpy())
                #[]                    
    """
    list_out = []
    shape = input.shape
    rank = len(shape)

    if in_dygraph_mode():
        outs = core.ops.where_index(input)
    else:
        outs = layers.where(input)

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
                layers.slice(
                    outs, axes=[rank - 1], starts=[i], ends=[i + 1]))
        return tuple(list_out)


377
def sort(x, axis=-1, descending=False, name=None):
378
    """
379 380
	:alias_main: paddle.sort
	:alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort
S
swtkiwi 已提交
381

W
wawltor 已提交
382
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
383

384
    Args:
385
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
386 387 388 389 390 391 392 393 394 395 396
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
397
        Tensor: sorted tensor(with the same shape and data type as ``x``).
398 399 400 401
    Examples:
        .. code-block:: python
            import paddle
            import numpy as np
402
            
403
            paddle.disable_static()
404
            input_array = np.array([[[5,8,9,5],
405 406 407 408 409
                            [0,0,1,7],
                            [6,9,2,4]],
                            [[5,2,4,2],
                            [4,7,7,9],
                            [1,7,0,6]]]).astype(np.float32)
410
            x = paddle.to_variable(input_array)
411 412 413
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
W
wawltor 已提交
414 415 416 417 418 419 420 421
            print(out1.numpy())
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
            print(out2.numpy())
422
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
423 424 425 426 427 428
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
            print(out3.numpy())
429
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
430 431 432 433 434
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
435
    """
436
    if in_dygraph_mode():
W
wawltor 已提交
437 438
        out, _ = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return out
439
    helper = LayerHelper("sort", **locals())
440 441
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
442 443 444 445
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
446
        inputs={'X': x},
447 448 449 450
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
451
    return out
C
Chengmo 已提交
452 453


454
def where(condition, x, y, name=None):
455
    """
456 457
	:alias_main: paddle.where
	:alias: paddle.where,paddle.tensor.where,paddle.tensor.search.where
S
swtkiwi 已提交
458

459 460 461
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

    .. math::
C
Chengmo 已提交
462

463 464 465 466 467
      out_i =
      \\begin{cases}
      x_i, \quad  \\text{if}  \\ condition_i \\  is \\ True \\\\
      y_i, \quad  \\text{if}  \\ condition_i \\  is \\ False \\\\
      \\end{cases}
C
Chengmo 已提交
468

469

470
    Args:
471 472 473 474 475 476 477 478
        condition(Variable): The condition to choose x or y.
        x(Variable): x is a Tensor Variable with data type float32, float64, int32, int64.
        y(Variable): y is a Tensor Variable with data type float32, float64, int32, int64.

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

479
    Returns:
480 481
        Variable: A Tensor with the same data dype as x. 

482 483 484
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
485
          import paddle
486 487
          import numpy as np
          import paddle.fluid as fluid
488 489 490

          x_i = np.array([0.9383, 0.1983, 3.2, 1.2]).astype("float32")
          y_i = np.array([1.0, 1.0, 1.0, 1.0]).astype("float32")
491 492 493 494 495

          with fluid.dygraph.guard():
              x = fluid.dygraph.to_variable(x_i)
              y = fluid.dygraph.to_variable(y_i)
              out = paddle.where(x>1, x, y)
496 497 498

          print(out.numpy())
          #out: [1.0, 1.0, 3.2, 1.2]
499 500
    """
    if not in_dygraph_mode():
501
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
502
        check_variable_and_dtype(
503
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
504
        check_variable_and_dtype(
505
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
506

507 508 509
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if x_shape == y_shape:
510
        if in_dygraph_mode():
511
            return core.ops.where(condition, x, y)
512 513
        else:
            helper = LayerHelper("where", **locals())
G
GaoWei8 已提交
514
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
515 516 517

            helper.append_op(
                type='where',
518 519 520
                inputs={'Condition': condition,
                        'X': x,
                        'Y': y},
521 522 523
                outputs={'Out': [out]})
            return out
    else:
524 525 526 527
        cond_int = layers.cast(condition, x.dtype)
        cond_not_int = layers.cast(layers.logical_not(condition), x.dtype)
        out1 = layers.elementwise_mul(x, cond_int)
        out2 = layers.elementwise_mul(y, cond_not_int)
528 529 530 531
        out = layers.elementwise_add(out1, out2)
        return out


C
Chengmo 已提交
532 533
def index_sample(x, index):
    """
534 535
	:alias_main: paddle.index_sample
	:alias: paddle.index_sample,paddle.tensor.index_sample,paddle.tensor.search.index_sample
S
swtkiwi 已提交
536

C
Chengmo 已提交
537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
        x (Variable): The source input tensor with 2-D shape. Supported data type is 
            int32, int64, float32, float64.
        index (Variable): The index input tensor with 2-D shape, first dimension should be same with X. 
            Data type is int32 or int64.

    Returns:
        output (Variable): The output is a tensor with the same shape as index.

    Examples:

        .. code-block:: python

            import paddle
            import paddle.fluid as fluid
            import numpy as np

C
Chengmo 已提交
575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616
            data = np.array([[1.0, 2.0, 3.0, 4.0],
                                [5.0, 6.0, 7.0, 8.0],
                                [9.0, 10.0, 11.0, 12.0]]).astype('float32')

            data_index = np.array([[0, 1, 2],
                                    [1, 2, 3],
                                    [0, 0, 0]]).astype('int32')

            target_data = np.array([[100, 200, 300, 400],
                                    [500, 600, 700, 800],
                                    [900, 1000, 1100, 1200]]).astype('int32')

            with fluid.dygraph.guard():
                x = fluid.dygraph.to_variable(data)
                index = fluid.dygraph.to_variable(data_index)
                target = fluid.dygraph.to_variable(target_data)

                out_z1 = paddle.index_sample(x, index)
                print(out_z1.numpy())
                #[[1. 2. 3.]
                # [6. 7. 8.]
                # [9. 9. 9.]]

                # Use the index of the maximum value by topk op
                # get the value of the element of the corresponding index in other tensors
                top_value, top_index = fluid.layers.topk(x, k=2)
                out_z2 = paddle.index_sample(target, top_index)
                print(top_value.numpy())
                #[[ 4.  3.]
                # [ 8.  7.]
                # [12. 11.]]

                print(top_index.numpy())
                #[[3 2]
                # [3 2]
                # [3 2]]

                print(out_z2.numpy())
                #[[ 400  300]
                # [ 800  700]
                # [1200 1100]]

C
Chengmo 已提交
617 618 619 620 621 622 623 624 625 626 627 628 629 630 631

    """
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out