search.py 28.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
C
Chengmo 已提交
14
from __future__ import print_function
15
import numpy as np
C
Chengmo 已提交
16 17
from ..fluid.layer_helper import LayerHelper
from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype
18
from ..fluid import core, layers
19

20
# TODO: define searching & indexing functions of a tensor  
21 22
# from ..fluid.layers import has_inf  #DEFINE_ALIAS
# from ..fluid.layers import has_nan  #DEFINE_ALIAS
23

24 25
__all__ = [
    'argmax',
26 27
    'argmin',
    'argsort',
28
    'masked_select',
29
    'topk',
30
    'where',
31 32
    'index_select',
    'nonzero',
C
Chengmo 已提交
33
    'sort',
34
    'index_sample',
35 36 37
]

from paddle.common_ops_import import *
38 39


40 41 42 43 44
def argsort(x, axis=-1, descending=False, name=None):
    """
	:alias_main: paddle.argsort
	:alias: paddle.argsort,paddle.tensor.argsort,paddle.tensor.search.argsort

W
wawltor 已提交
45
    This OP sorts the input along the given axis, and returns the corresponding index tensor for the sorted output values. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor: sorted indices(with the same shape as ``x``
        and with data type int64).

    Examples:
李灿 已提交
65

66
        .. code-block:: python
李灿 已提交
67

68 69
            import paddle
            
70
            paddle.disable_static()
71 72 73 74 75 76 77
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                dtype='float32')
78 79 80 81
            out1 = paddle.argsort(x=x, axis=-1)
            out2 = paddle.argsort(x=x, axis=0)
            out3 = paddle.argsort(x=x, axis=1)
            print(out1.numpy())
W
wawltor 已提交
82 83 84
            #[[[0 3 1 2]
            #  [0 1 2 3]
            #  [2 3 0 1]]
85
            # [[1 3 2 0]
W
wawltor 已提交
86 87
            #  [0 1 2 3]
            #  [2 0 3 1]]]
88
            print(out2.numpy())
W
wawltor 已提交
89 90 91 92 93 94
            #[[[0 1 1 1]
            #  [0 0 0 0]
            #  [1 1 1 0]]
            # [[1 0 0 0]
            #  [1 1 1 1]
            #  [0 0 0 1]]]
95
            print(out3.numpy())
W
wawltor 已提交
96 97 98 99 100 101
            #[[[1 1 1 2]
            #  [0 0 2 0]
            #  [2 2 0 1]]
            # [[2 0 2 0]
            #  [1 1 0 2]
            #  [0 2 1 1]]]
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
    """
    if in_dygraph_mode():
        _, ids = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return ids
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'argsort')

    helper = LayerHelper("argsort", **locals())
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=True)
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
        inputs={'X': x},
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
    return ids


125
def argmax(x, axis=None, keepdim=False, dtype="int64", name=None):
126 127 128 129 130
    """
    This OP computes the indices of the max elements of the input tensor's
    element along the provided axis.

    Args:
W
wawltor 已提交
131
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
132 133
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
W
wawltor 已提交
134 135 136
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
        keepdim(bool, optional): Keep the axis that selecting max. The defalut value is False.
137 138 139
        dtype(str|np.dtype, optional): Data type of the output tensor which can
                    be int32, int64. The default value is 'int64', and it will
                    return the int64 indices.
140 141 142
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
143 144

    Returns:
W
wawltor 已提交
145
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`
146 147 148 149

    Examples:
        .. code-block:: python

W
wawltor 已提交
150
            import paddle
151

W
wawltor 已提交
152
            paddle.disable_static()
153 154 155
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
156 157 158 159 160 161 162 163
            out1 = paddle.argmax(x)
            print(out1.numpy()) # 2
            out2 = paddle.argmax(x, axis=1)
            print(out2.numpy()) 
            # [2 3 1]
            out3 = paddle.argmax(x, axis=-1)
            print(out3.numpy()) 
            # [2 3 1]
164
    """
165 166 167 168
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmax, but received %s."
            % (type(axis)))
169

170 171 172 173
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmax could not be None, but received None"
        )
174

175 176
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
177 178 179 180 181 182
    flatten = False
    if axis is None:
        flatten = True
        axis = 0

    if in_dygraph_mode():
183 184
        out = core.ops.arg_max(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
185 186 187 188 189 190
        return out

    helper = LayerHelper("argmax", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmax')
191
    attrs = {}
W
wawltor 已提交
192 193 194 195
    out = helper.create_variable_for_type_inference(var_dtype)
    attrs['keepdims'] = keepdim
    attrs['axis'] = axis
    attrs['flatten'] = flatten
196
    attrs['dtype'] = var_dtype
W
wawltor 已提交
197 198 199 200 201 202
    helper.append_op(
        type='arg_max', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
    out.stop_gradient = True
    return out


203
def argmin(x, axis=None, keepdim=False, dtype="int64", name=None):
W
wawltor 已提交
204 205 206 207 208 209 210 211 212 213
    """
    This OP computes the indices of the min elements of the input tensor's
    element along the provided axis.

    Args:
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is None, the input `x` will be into the flatten tensor, and selecting the min value index.
214
        keepdim(bool, optional): Keep the axis that selecting min. The defalut value is False.
W
wawltor 已提交
215
        dtype(str): Data type of the output tensor which can
216
                    be int32, int64. The default value is 'int64', and it will
W
wawltor 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230
                    return the int64 indices.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns:
        Tensor, return the tensor of `int32` if set :attr:`dtype` is `int32`, otherwise return the tensor of `int64`

    Examples:
        .. code-block:: python

            import paddle

            paddle.disable_static()
231 232 233
            x =  paddle.to_tensor([[5,8,9,5],
                                     [0,0,1,7],
                                     [6,9,2,4]])
W
wawltor 已提交
234 235 236 237 238 239 240 241 242
            out1 = paddle.argmin(x)
            print(out1.numpy()) # 4
            out2 = paddle.argmin(x, axis=1)
            print(out2.numpy()) 
            # [0 0 2]
            out3 = paddle.argmin(x, axis=-1)
            print(out3.numpy()) 
            # [0 0 2]
    """
243 244 245 246
    if axis is not None and not isinstance(axis, int):
        raise TypeError(
            "The type of 'axis'  must be int or None in argmin, but received %s."
            % (type(axis)))
247

248 249 250 251
    if dtype is None:
        raise ValueError(
            "the value of 'dtype' in argmin could not be None, but received None"
        )
252

253 254
    var_dtype = convert_np_dtype_to_dtype_(dtype)
    check_dtype(var_dtype, 'dtype', ['int32', 'int64'], 'argmin')
W
wawltor 已提交
255
    flatten = False
256
    if axis is None:
W
wawltor 已提交
257 258 259 260
        flatten = True
        axis = 0

    if in_dygraph_mode():
261 262
        out = core.ops.arg_min(x, 'axis', axis, 'dtype', var_dtype, 'keepdims',
                               keepdim, 'flatten', flatten)
W
wawltor 已提交
263 264 265 266 267 268 269
        return out

    helper = LayerHelper("argmin", **locals())
    check_variable_and_dtype(
        x, 'x', ['float32', 'float64', 'int16', 'int32', 'int64', 'uint8'],
        'paddle.argmin')
    out = helper.create_variable_for_type_inference(var_dtype)
270
    attrs = {}
W
wawltor 已提交
271
    attrs['keepdims'] = keepdim
272
    attrs['axis'] = axis
W
wawltor 已提交
273
    attrs['flatten'] = flatten
274
    attrs['dtype'] = var_dtype
275
    helper.append_op(
W
wawltor 已提交
276
        type='arg_min', inputs={'X': x}, outputs={'Out': [out]}, attrs=attrs)
277 278
    out.stop_gradient = True
    return out
279 280


281
def index_select(x, index, axis=0, name=None):
282
    """
S
swtkiwi 已提交
283

284 285 286 287
    Returns a new tensor which indexes the ``input`` tensor along dimension ``axis`` using 
    the entries in ``index`` which is a Tensor. The returned tensor has the same number 
    of dimensions as the original ``x`` tensor. The dim-th dimension has the same 
    size as the length of ``index``; other dimensions have the same size as in the ``x`` tensor. 
C
Chengmo 已提交
288

289
    Args:
290 291 292
        x (Tensor): The input Tensor to be operated. The data of ``x`` can be one of float32, float64, int32, int64.
        index (Tensor): The 1-D Tensor containing the indices to index. The data type of ``index`` must be int32 or int64.
        axis (int, optional): The dimension in which we index. Default: if None, the ``axis`` is 0.
293 294 295
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
296 297

    Returns:
298
        Tensor: A Tensor with same data type as ``x``.
299
    
300 301
    Examples:
        .. code-block:: python
302
            
303 304
            import paddle

305 306 307 308
            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            index = paddle.to_tensor([0, 1, 1], dtype='int32')
309 310 311 312 313 314 315 316
            out_z1 = paddle.index_select(x=x, index=index)
            #[[1. 2. 3. 4.]
            # [5. 6. 7. 8.]
            # [5. 6. 7. 8.]]
            out_z2 = paddle.index_select(x=x, index=index, axis=1)
            #[[ 1.  2.  2.]
            # [ 5.  6.  6.]
            # [ 9. 10. 10.]]
317
    """
318

319
    if in_dygraph_mode():
320
        return core.ops.index_select(x, index, 'dim', axis)
321

322 323 324
    helper = LayerHelper("index_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_select')
325
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
326
                             'paddle.tensor.search.index_select')
327

328
    out = helper.create_variable_for_type_inference(x.dtype)
329 330 331

    helper.append_op(
        type='index_select',
332
        inputs={'X': x,
333 334
                'Index': index},
        outputs={'Out': out},
335
        attrs={'dim': axis})
336 337 338
    return out


339
def nonzero(x, as_tuple=False):
340 341 342 343 344 345 346 347
    """
    Return a tensor containing the indices of all non-zero elements of the `input` 
    tensor. If as_tuple is True, return a tuple of 1-D tensors, one for each dimension 
    in `input`, each containing the indices (in that dimension) of all non-zero elements 
    of `input`. Given a n-Dimensional `input` tensor with shape [x_1, x_2, ..., x_n], If 
    as_tuple is False, we can get a output tensor with shape [z, n], where `z` is the 
    number of all non-zero elements in the `input` tensor. If as_tuple is True, we can get 
    a 1-D tensor tuple of length `n`, and the shape of each 1-D tensor is [z, 1].
C
Chengmo 已提交
348

349
    Args:
350
        x (Tensor): The input tensor variable.
351 352 353
        as_tuple (bool): Return type, Tensor or tuple of Tensor.

    Returns:
354
        Tensor. The data type is int64.
355 356

    Examples:
357
    
358
        .. code-block:: python
359

李灿 已提交
360

361
            import paddle
362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397

            x1 = paddle.to_tensor([[1.0, 0.0, 0.0],
                          [0.0, 2.0, 0.0],
                          [0.0, 0.0, 3.0]])
            x2 = paddle.to_tensor([0.0, 1.0, 0.0, 3.0])
            x3 = paddle.to_tensor([0.0, 0.0, 0.0])
            out_z1 = paddle.nonzero(x1)
            print(out_z1.numpy())
            #[[0 0]
            # [1 1]
            # [2 2]]
            out_z1_tuple = paddle.nonzero(x1, as_tuple=True)
            for out in out_z1_tuple:
                print(out.numpy())
            #[[0]
            # [1]
            # [2]]
            #[[0]
            # [1]
            # [2]]
            out_z2 = paddle.nonzero(x2)
            print(out_z2.numpy())
            #[[1]
            # [3]]
            out_z2_tuple = paddle.nonzero(x2, as_tuple=True)
            for out in out_z2_tuple:
                print(out.numpy())
            #[[1]
            # [3]]
            out_z3 = paddle.nonzero(x3)
            print(out_z3.numpy())
            #[]
            out_z3_tuple = paddle.nonzero(x3, as_tuple=True)
            for out in out_z3_tuple:
                print(out.numpy())
            #[]                    
398 399
    """
    list_out = []
400
    shape = x.shape
401 402 403
    rank = len(shape)

    if in_dygraph_mode():
404
        outs = core.ops.where_index(x)
405
    else:
406
        outs = layers.where(x)
407 408 409 410 411 412 413 414 415 416 417 418 419

    if not as_tuple:
        return outs
    elif rank == 1:
        return tuple([outs])
    else:
        for i in range(rank):
            list_out.append(
                layers.slice(
                    outs, axes=[rank - 1], starts=[i], ends=[i + 1]))
        return tuple(list_out)


420
def sort(x, axis=-1, descending=False, name=None):
421
    """
422 423
	:alias_main: paddle.sort
	:alias: paddle.sort,paddle.tensor.sort,paddle.tensor.search.sort
S
swtkiwi 已提交
424

W
wawltor 已提交
425
    This OP sorts the input along the given axis, and returns the sorted output tensor. The default sort algorithm is ascending, if you want the sort algorithm to be descending, you must set the :attr:`descending` as True.
C
Chengmo 已提交
426

427
    Args:
428
        x(Tensor): An input N-D Tensor with type float32, float64, int16,
429 430 431 432 433 434 435 436 437 438 439
            int32, int64, uint8.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is Rank(x). when axis<0, it works the same way
            as axis+R. Default is 0.
        descending(bool, optional) : Descending is a flag, if set to true,
            algorithm will sort by descending order, else sort by
            ascending order. Default is false.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.
    Returns:
W
wawltor 已提交
440
        Tensor: sorted tensor(with the same shape and data type as ``x``).
441 442 443
    Examples:
        .. code-block:: python
            import paddle
444
            
445
            paddle.disable_static()
446 447 448 449 450 451 452
            x = paddle.to_tensor([[[5,8,9,5],
                                   [0,0,1,7],
                                   [6,9,2,4]],
                                  [[5,2,4,2],
                                   [4,7,7,9],
                                   [1,7,0,6]]], 
                                 dtype='float32')
453 454 455
            out1 = paddle.sort(x=x, axis=-1)
            out2 = paddle.sort(x=x, axis=0)
            out3 = paddle.sort(x=x, axis=1)
W
wawltor 已提交
456 457 458 459 460 461 462 463
            print(out1.numpy())
            #[[[5. 5. 8. 9.]
            #  [0. 0. 1. 7.]
            #  [2. 4. 6. 9.]]
            # [[2. 2. 4. 5.]
            #  [4. 7. 7. 9.]
            #  [0. 1. 6. 7.]]]
            print(out2.numpy())
464
            #[[[5. 2. 4. 2.]
W
wawltor 已提交
465 466 467 468 469 470
            #  [0. 0. 1. 7.]
            #  [1. 7. 0. 4.]]
            # [[5. 8. 9. 5.]
            #  [4. 7. 7. 9.]
            #  [6. 9. 2. 6.]]]
            print(out3.numpy())
471
            #[[[0. 0. 1. 4.]
W
wawltor 已提交
472 473 474 475 476
            #  [5. 8. 2. 5.]
            #  [6. 9. 9. 7.]]
            # [[1. 2. 0. 2.]
            #  [4. 7. 4. 6.]
            #  [5. 7. 7. 9.]]]
477
    """
478
    if in_dygraph_mode():
W
wawltor 已提交
479 480
        out, _ = core.ops.argsort(x, 'axis', axis, 'descending', descending)
        return out
481
    helper = LayerHelper("sort", **locals())
482 483
    out = helper.create_variable_for_type_inference(
        dtype=x.dtype, stop_gradient=False)
484 485 486 487
    ids = helper.create_variable_for_type_inference(
        VarDesc.VarType.INT64, stop_gradient=True)
    helper.append_op(
        type='argsort',
488
        inputs={'X': x},
489 490 491 492
        outputs={'Out': out,
                 'Indices': ids},
        attrs={'axis': axis,
               'descending': descending})
W
wawltor 已提交
493
    return out
C
Chengmo 已提交
494 495


496
def where(condition, x, y, name=None):
497
    """
498 499 500
    Return a tensor of elements selected from either $x$ or $y$, depending on $condition$.

    .. math::
C
Chengmo 已提交
501

502 503 504 505 506
      out_i =
      \\begin{cases}
      x_i, \quad  \\text{if}  \\ condition_i \\  is \\ True \\\\
      y_i, \quad  \\text{if}  \\ condition_i \\  is \\ False \\\\
      \\end{cases}
C
Chengmo 已提交
507

508

509
    Args:
G
GaoWei8 已提交
510 511 512
        condition(Tensor): The condition to choose x or y.
        x(Tensor): x is a Tensor with data type float32, float64, int32, int64.
        y(Tensor): y is a Tensor with data type float32, float64, int32, int64.
513 514 515 516 517

        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

518
    Returns:
G
GaoWei8 已提交
519
        Tensor: A Tensor with the same data dype as x. 
520

521 522 523
    Examples:
        .. code-block:: python

G
GaoWei8 已提交
524
          import paddle
525

526 527 528
          x = paddle.to_tensor([0.9383, 0.1983, 3.2, 1.2])
          y = paddle.to_tensor([1.0, 1.0, 1.0, 1.0])
          out = paddle.where(x>1, x, y)
529

G
GaoWei8 已提交
530
          print(out)
531
          #out: [1.0, 1.0, 3.2, 1.2]
532 533
    """
    if not in_dygraph_mode():
534
        check_variable_and_dtype(condition, 'condition', ['bool'], 'where')
535
        check_variable_and_dtype(
536
            x, 'x', ['float32', 'float64', 'int32', 'int64'], 'where')
537
        check_variable_and_dtype(
538
            y, 'y', ['float32', 'float64', 'int32', 'int64'], 'where')
539

540 541 542
    x_shape = list(x.shape)
    y_shape = list(y.shape)
    if x_shape == y_shape:
543
        if in_dygraph_mode():
544
            return core.ops.where(condition, x, y)
545 546
        else:
            helper = LayerHelper("where", **locals())
G
GaoWei8 已提交
547
            out = helper.create_variable_for_type_inference(dtype=x.dtype)
548 549 550

            helper.append_op(
                type='where',
551 552 553
                inputs={'Condition': condition,
                        'X': x,
                        'Y': y},
554 555 556
                outputs={'Out': [out]})
            return out
    else:
557 558 559 560
        cond_int = layers.cast(condition, x.dtype)
        cond_not_int = layers.cast(layers.logical_not(condition), x.dtype)
        out1 = layers.elementwise_mul(x, cond_int)
        out2 = layers.elementwise_mul(y, cond_not_int)
561 562 563 564
        out = layers.elementwise_add(out1, out2)
        return out


C
Chengmo 已提交
565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588
def index_sample(x, index):
    """
    **IndexSample Layer**

    IndexSample OP returns the element of the specified location of X, 
    and the location is specified by Index. 

    .. code-block:: text


                Given:

                X = [[1, 2, 3, 4, 5],
                     [6, 7, 8, 9, 10]]

                Index = [[0, 1, 3],
                         [0, 2, 4]]

                Then:

                Out = [[1, 2, 4],
                       [6, 8, 10]]

    Args:
C
Chengmo 已提交
589
        x (Tensor): The source input tensor with 2-D shape. Supported data type is 
C
Chengmo 已提交
590
            int32, int64, float32, float64.
C
Chengmo 已提交
591
        index (Tensor): The index input tensor with 2-D shape, first dimension should be same with X. 
C
Chengmo 已提交
592 593 594
            Data type is int32 or int64.

    Returns:
C
Chengmo 已提交
595
        output (Tensor): The output is a tensor with the same shape as index.
C
Chengmo 已提交
596 597 598 599 600 601

    Examples:

        .. code-block:: python

            import paddle
602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635

            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]], dtype='float32')
            index = paddle.to_tensor([[0, 1, 2],
                                      [1, 2, 3],
                                      [0, 0, 0]], dtype='int32')
            target = paddle.to_tensor([[100, 200, 300, 400],
                                       [500, 600, 700, 800],
                                       [900, 1000, 1100, 1200]], dtype='int32')
            out_z1 = paddle.index_sample(x, index)
            print(out_z1.numpy())
            #[[1. 2. 3.]
            # [6. 7. 8.]
            # [9. 9. 9.]]

            # Use the index of the maximum value by topk op
            # get the value of the element of the corresponding index in other tensors
            top_value, top_index = paddle.topk(x, k=2)
            out_z2 = paddle.index_sample(target, top_index)
            print(top_value.numpy())
            #[[ 4.  3.]
            # [ 8.  7.]
            # [12. 11.]]

            print(top_index.numpy())
            #[[3 2]
            # [3 2]
            # [3 2]]

            print(out_z2.numpy())
            #[[ 400  300]
            # [ 800  700]
            # [1200 1100]]
C
Chengmo 已提交
636

C
Chengmo 已提交
637
    """
C
Chengmo 已提交
638 639 640
    if in_dygraph_mode():
        return core.ops.index_sample(x, index)

C
Chengmo 已提交
641 642 643 644 645 646 647 648 649 650 651 652 653
    helper = LayerHelper("index_sample", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    check_variable_and_dtype(index, 'index', ['int32', 'int64'],
                             'paddle.tensor.search.index_sample')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)

    helper.append_op(
        type='index_sample',
        inputs={'X': x,
                'Index': index},
        outputs={'Out': out})
    return out
654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674


def masked_select(x, mask, name=None):
    """
    This OP Returns a new 1-D tensor which indexes the input tensor according to the ``mask``
    which is a tensor with data type of bool.

    Args:
        x (Tensor): The input Tensor, the data type can be int32, int64, float32, float64. 
        mask (Tensor): The Tensor containing the binary mask to index with, it's data type is bool.
        name(str, optional): The default value is None. Normally there is no
            need for user to set this property. For more information, please
            refer to :ref:`api_guide_Name`.

    Returns: A 1-D Tensor which is the same data type  as ``x``.
    
    Examples:

        .. code-block:: python

            import paddle
675 676 677 678 679 680 681 682


            x = paddle.to_tensor([[1.0, 2.0, 3.0, 4.0],
                                  [5.0, 6.0, 7.0, 8.0],
                                  [9.0, 10.0, 11.0, 12.0]])
            mask = paddle.to_tensor([[True, False, False, False],
                                     [True, True, False, False],
                                     [True, False, False, False]])
683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699
            out = paddle.masked_select(x, mask)
            #[1.0 5.0 6.0 9.0]
    """

    if in_dygraph_mode():
        return core.ops.masked_select(x, mask)

    helper = LayerHelper("masked_select", **locals())
    check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'],
                             'paddle.tensor.search.mask_select')
    check_variable_and_dtype(mask, 'mask', ['bool'],
                             'paddle.tensor.search.masked_select')
    out = helper.create_variable_for_type_inference(dtype=x.dtype)
    helper.append_op(
        type='masked_select', inputs={'X': x,
                                      'Mask': mask}, outputs={'Y': out})
    return out
W
wawltor 已提交
700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730


def topk(x, k, axis=None, largest=True, sorted=True, name=None):
    """
    This OP is used to find values and indices of the k largest or smallest at the optional axis.
    If the input is a 1-D Tensor, finds the k largest or smallest values and indices.
    If the input is a Tensor with higher rank, this operator computes the top k values and indices along the :attr:`axis`.

    Args:
        x(Tensor): Tensor, an input N-D Tensor with type float32, float64, int32, int64.
        k(int, Tensor): The number of top elements to look for along the axis.
        axis(int, optional): Axis to compute indices along. The effective range
            is [-R, R), where R is x.ndim. when axis < 0, it works the same way
            as axis + R. Default is -1.
        largest(bool, optional) : largest is a flag, if set to true,
            algorithm will sort by descending order, otherwise sort by
            ascending order. Default is True.
        sorted(bool, optional): controls whether to return the elements in sorted order, default value is True. In gpu device, it always return the sorted value. 
        name (str, optional): Name for the operation (optional, default is None). For more information, please refer to :ref:`api_guide_Name`.

    Returns:
        tuple(Tensor), return the values and indices. The value data type is the same as the input `x`. The indices data type is int64.

    Examples:

        .. code-block:: python

           import paddle

           paddle.disable_static()

731
           tensor_1 = paddle.to_tensor([1, 4, 5, 7])
W
wawltor 已提交
732 733 734 735 736
           value_1, indices_1 = paddle.topk(tensor_1, k=1)
           print(value_1.numpy())
           # [7]
           print(indices_1.numpy())
           # [3] 
737
           tensor_2 = paddle.to_tensor([[1, 4, 5, 7], [2, 6, 2, 5]])
W
wawltor 已提交
738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
           value_2, indices_2 = paddle.topk(tensor_2, k=1)
           print(value_2.numpy())
           # [[7]
           #  [6]]
           print(indices_2.numpy())
           # [[3]
           #  [1]]
           value_3, indices_3 = paddle.topk(tensor_2, k=1, axis=-1)
           print(value_3.numpy())
           # [[7]
           #  [6]]
           print(indices_3.numpy())
           # [[3]
           #  [1]]
           value_4, indices_4 = paddle.topk(tensor_2, k=1, axis=0)
           print(value_4.numpy())
           # [[2 6 5 7]]
           print(indices_4.numpy())
           # [[1 1 0 0]]

    """
    if in_dygraph_mode():
        k = k.numpy().item(0) if isinstance(k, Variable) else k
        if axis is None:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'largest', largest,
                                             'sorted', sorted)
        else:
            out, indices = core.ops.top_k_v2(x, 'k',
                                             int(k), 'axis', axis, 'largest',
                                             largest, 'sorted', sorted)
        return out, indices

    helper = LayerHelper("top_k_v2", **locals())
    inputs = {"X": [x]}
    attrs = {}
    if isinstance(k, Variable):
        inputs['K'] = [k]
    else:
        attrs = {'k': k}
    attrs['largest'] = largest
    attrs['sorted'] = sorted
    if axis is not None:
        attrs['axis'] = axis

    values = helper.create_variable_for_type_inference(dtype=x.dtype)
    indices = helper.create_variable_for_type_inference(dtype="int64")

    helper.append_op(
        type="top_k_v2",
        inputs=inputs,
        outputs={"Out": [values],
                 "Indices": [indices]},
        attrs=attrs)
    indices.stop_gradient = True
    return values, indices