test_dist_base.py 57.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46
def print_to_out(out_losses):
T
tianshuo78520a 已提交
47
    sys.stdout.buffer.write(pickle.dumps(out_losses))
48 49 50


def print_to_err(class_name, log_str):
51 52
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
53
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
54 55


56 57 58 59
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
60
class TestDistRunnerBase(object):
W
Wu Yi 已提交
61 62 63
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
64
                  single_device=False,
J
Jiangxinz 已提交
65 66
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
67 68 69
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

70
    @staticmethod
W
Wu Yi 已提交
71 72 73 74 75
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
76
                       dc_asgd=False,
77
                       current_endpoint=None,
T
tangwei12 已提交
78 79
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
80
        # NOTE: import fluid until runtime, or else forking processes will cause error.
81
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
82
        config.enable_dc_asgd = dc_asgd
83
        config.sync_mode = sync_mode
T
tangwei12 已提交
84 85
        config.runtime_split_send_recv = hogwild_mode

86 87
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
88
        # config.runtime_split_send_recv = True
89
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
90 91 92 93
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
94
            trainers=trainers,
T
tangwei12 已提交
95
            sync_mode=sync_mode,
96
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
97 98
        return t

99 100 101 102 103 104 105 106 107
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
108
    def run_pserver(self, args):
W
Wu Yi 已提交
109
        self.lr = args.lr
110
        self.get_model(batch_size=args.batch_size)
111
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
112 113 114 115 116 117 118 119 120

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
121 122 123
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
124

T
typhoonzero 已提交
125 126 127
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
128
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
129
        exe.run(pserver_prog)
130
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
151 152 153

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
154
        for i in six.moves.xrange(RUN_STEP):
155
            loss = exe.run(main_program, fetch_list=[avg_cost])
156 157 158
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
159 160 161
            if lr_sheduler is not None:
                lr_sheduler.step()

162
        data_loader.reset()
163 164
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
165
        sys.stdout.buffer.write(pickle.dumps(out_losses))
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var
            for var in fluid.default_main_program().global_block().vars.values()
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
212 213 214 215 216
            if paddle.distributed.get_world_size(
            ) == 1 and args.update_method == 'gloo':  # Gloo single mode
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
236
        sys.stdout.buffer.write(pickle.dumps(out_losses))
237

238 239
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
240 241 242 243 244 245 246 247

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
248
        dist_strategy.fuse_memory_size = 1  # MB
249
        dist_strategy.fuse_laryer_size = 1
250 251 252 253
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
254 255
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
256 257 258

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
259
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
260 261
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
262 263

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
264
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
265 266 267 268

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

269 270 271 272 273 274 275 276 277 278
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
279 280 281 282 283 284 285 286 287 288

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

289 290 291 292 293 294 295
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

296 297 298 299 300 301 302 303 304 305 306 307 308 309
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

310
        print_to_err(type(self).__name__, "begin to train on trainer")
311 312 313 314 315 316
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
317 318
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
319

T
tianshuo78520a 已提交
320
        sys.stdout.buffer.write(pickle.dumps(out_losses))
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

352
    def run_trainer(self, args):
W
Wu Yi 已提交
353
        self.lr = args.lr
W
Wu Yi 已提交
354 355 356
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
357 358 359
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
360 361 362
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
363

W
Wu Yi 已提交
364
        if args.update_method == "pserver":
365
            print_to_err(
366 367
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
368 369 370 371 372 373 374 375 376
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
377
            trainer_prog = t.get_trainer_program()
378
            print_to_err(
379 380
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
381
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
382 383 384
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
385
            config.nccl_comm_num = args.nccl_comm_num
386 387 388
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
389
            print_to_err(
390 391
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
392 393 394 395 396 397 398
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
399
            print_to_err(
400 401
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
402
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
403
        else:
404
            print_to_err(
405 406
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
407
            trainer_prog = fluid.default_main_program()
408
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
409

410 411 412
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

413
        if args.use_cuda:
414 415
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
416 417 418
        else:
            place = fluid.CPUPlace()

419 420
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
421
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
422

W
Wu Yi 已提交
423 424
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
425

W
Wu Yi 已提交
426
        build_stra = fluid.BuildStrategy()
427 428 429
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
430

431 432 433 434
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
435 436 437
        if args.hogwild:
            build_stra.async_mode = True

438 439 440
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
441 442 443 444 445
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
446
        pass_builder = None
X
Xin Pan 已提交
447
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
448
            pass_builder = build_stra._finalize_strategy_and_create_passes()
449
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
450
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
451

W
Wu Yi 已提交
452
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
453 454
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
455
        else:
W
Wu Yi 已提交
456
            # case args.update_method == "nccl2_reduce_layer":
457 458
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
459

460
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
461
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
462
            loss_name=avg_cost.name,
W
Wu Yi 已提交
463
            build_strategy=build_stra,
W
Wu Yi 已提交
464
            exec_strategy=exec_strategy)
465
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
466 467 468 469 470 471 472

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
473
        reader_generator = train_reader()
T
typhoonzero 已提交
474

475 476
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
477
            if args.update_method != "local" and args.use_reader_alloc:
478 479 480 481 482 483 484
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
485

486
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
487
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
488
        out_losses = []
489
        for i in six.moves.xrange(RUN_STEP):
490 491
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
492
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
493
            out_losses.append(loss[0])
494
            print_to_err(type(self).__name__, "run step %d finished" % i)
495 496 497
            if lr_scheduler is not None:
                lr_scheduler.step()

498
        print_to_err(type(self).__name__, "trainer run finished")
499

500
        print_to_out(out_losses)
T
typhoonzero 已提交
501 502


503 504 505 506 507 508 509 510 511
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

512
    def _get_data(self, batch, args):
513 514 515 516
        if paddle.distributed.get_world_size(
        ) == 1 and args.update_method == 'gloo':  # Gloo single mode
            return batch
        elif args.update_method != "local":
517
            new_batch = []
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539

            # NOTE(@xiongkun03) args.diff_batch means batch length is different: 
            # such as : batch = [2,3,4,5], then the first rank will get [2]  and 
            # the second rank will get [3,4,5]. 
            # this function is for test sparse_embedding_differ_length
            if hasattr(args, "diff_batch") and args.diff_batch:
                assert len(
                    batch) > 2, "in differ_batch mode, len(batch) must > 2."
                if paddle.distributed.get_rank() == 0:
                    new_batch.append(batch[0])
                elif paddle.distributed.get_rank() == 1:
                    new_batch.extend([_ for _ in batch[1:]])
                else:
                    raise NotImplementedError(
                        "Current TestParallelDyGraphRunnerBase don't support world_size > 2"
                    )
                return new_batch
            else:
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
540 541 542
        else:
            return batch

543
    def run_trainer(self, args):
Y
Yan Xu 已提交
544

545
        seed = 90
546 547 548
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
549 550 551 552 553 554
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
555
            assert ("Only support CUDAPlace or XPUPlace or CPU(Gloo) for now.")
556 557 558 559

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
560 561
            np.random.seed(seed)
            import random
562
            random.seed(seed)
563 564
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
565

566 567
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
568 569 570 571 572
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
573
                print_to_err(
574 575
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
576
                dygraph.parallel.prepare_context(strategy)
577 578 579 580 581 582
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
583
                print_to_err(type(self).__name__, "model built in dygraph")
584 585 586 587 588 589 590 591 592 593

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=True)

594
            out_losses = []
595
            print_to_err(type(self).__name__, "begin to run dygraph training")
596
            for step_id, data in enumerate(train_reader()):
597
                data = self._get_data(data, args)
598 599 600
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
601
                if step_id % 10 == 0:
602
                    print_to_err(
603
                        type(self).__name__,
604
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
605
                out_losses.append(loss.numpy())
606 607 608 609

                loss.backward()

                opt.minimize(loss)
610 611
                if not args.accumulate_gradient:
                    model.clear_gradients()
612
        print_to_out(out_losses)
613

614 615 616 617 618 619 620 621 622
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
623
        random.seed(seed)
624 625 626 627
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
628
        if args.update_method in ["nccl2", "gloo"]:
629 630 631 632
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
633
        if args.update_method in ["nccl2", "gloo"]:
634 635 636 637
            if args.find_unused_parameters:
                model = paddle.DataParallel(model, find_unused_parameters=True)
            else:
                model = paddle.DataParallel(model, find_unused_parameters=False)
638 639 640 641 642 643 644 645 646 647 648 649 650 651 652

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

653
    def run_use_fleet_api_trainer(self, args):
654 655 656 657 658 659 660 661 662 663
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
664
        random.seed(seed)
665 666 667
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

668 669
        # set strategy
        strategy = fleet.DistributedStrategy()
670 671
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
672

673
        # 3. init parallel env
674
        if args.update_method == "nccl2" or "bkcl":
675
            fleet.init(is_collective=True, strategy=strategy)
676 677 678

        # 4. train model
        model, train_reader, opt = self.get_model()
679
        if args.update_method == "nccl2" or "bkcl":
680 681 682 683 684 685 686 687 688 689 690 691 692 693
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
694 695
            if not args.accumulate_gradient:
                opt.clear_grad()
696 697
        print_to_out(out_losses)

698

T
typhoonzero 已提交
699
def runtime_main(test_class):
W
Wu Yi 已提交
700 701 702 703
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
704 705 706 707
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
708 709 710
        choices=[
            "pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer", "gloo"
        ])
W
Wu Yi 已提交
711 712
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
713
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
714 715
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
716
    parser.add_argument('--use_pipeline', action='store_true')
717
    parser.add_argument('--use_fleet_api', action='store_true')
718
    parser.add_argument('--use_fleet_api_20', action='store_true')
719
    parser.add_argument('--use_local_sgd', action='store_true')
720
    parser.add_argument('--diff_batch', action='store_true')
721
    parser.add_argument('--ut4grad_allreduce', action='store_true')
722
    parser.add_argument(
723
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
724 725 726
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
727
    parser.add_argument('--use_cuda', action='store_true')
728
    parser.add_argument('--use_cpu', action='store_true')
729
    parser.add_argument('--use_xpu', action='store_true')
730
    parser.add_argument('--use_dgc', action='store_true')
731
    parser.add_argument('--accumulate_gradient', action='store_true')
732
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
733
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
734
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
735
    parser.add_argument('--hogwild', action='store_true')
736
    parser.add_argument('--save_model', action='store_true')
737
    parser.add_argument(
W
Wu Yi 已提交
738
        '--use_reader_alloc', action='store_true', required=False)
739
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
740
    parser.add_argument('--lr', required=False, type=float, default=0.001)
741 742
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
743 744 745 746 747
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
748
    parser.add_argument('--sync_batch_norm', action='store_true')
749 750 751 752 753
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
754 755

    args = parser.parse_args()
T
typhoonzero 已提交
756

757 758 759
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
760
    model = test_class()
W
Wu Yi 已提交
761
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
762
        model.run_pserver(args)
763 764
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
765 766
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
767 768
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
769
    else:
770
        model.run_trainer(args)
X
Xin Pan 已提交
771

M
minqiyang 已提交
772

M
minqiyang 已提交
773
import paddle.compat as cpt
Y
Yancey1989 已提交
774 775
import socket
from contextlib import closing
M
minqiyang 已提交
776

X
Xin Pan 已提交
777 778

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
779 780 781
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

782 783 784
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
785
            self.__use_xpu = False
786
            self._use_dgc = False
787 788
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
789 790 791 792 793
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
794 795 796 797 798
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
799 800 801 802
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
803

X
Xin Pan 已提交
804 805 806
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
807
        self._port_set = set()
M
minqiyang 已提交
808
        self._python_interp = sys.executable
W
Wu Yi 已提交
809
        self._sync_mode = True
T
tangwei12 已提交
810
        self._hogwild_mode = False
811
        self._enforce_place = None
W
Wu Yi 已提交
812
        self._use_reduce = False
W
Wu Yi 已提交
813
        self._dc_asgd = False  # must use with async mode
814
        self._use_reader_alloc = True
W
Wu Yi 已提交
815
        self._nccl2_mode = False
816
        self._bkcl_mode = False
817
        self._gloo_mode = False  # now, support gloo backend
818
        self._pipeline_mode = False
819
        self._mp_mode = False
820
        self._diff_batch = False
W
Wu Yi 已提交
821 822 823 824 825
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
826
        self._lr = 0.001
827
        self._use_dgc = False
828
        self._dygraph = False
829
        self._nccl_comm_num = 1
830
        self._enable_backward_deps = False
831
        self._use_fleet_api = False
832
        self._use_fleet_api_20 = False
833 834
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
835
        self._use_hallreduce = False
836
        self._save_model = False
837
        self._fuse_all_reduce = None
838
        self._accumulate_gradient = False
839
        self._find_unused_parameters = False
W
Wu Yi 已提交
840
        self._setup_config()
841 842 843 844 845 846 847 848 849 850 851 852 853 854

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

855
        self._after_setup_config()
X
Xin Pan 已提交
856

Y
Yancey1989 已提交
857
    def _find_free_port(self):
Y
Yancey1989 已提交
858 859 860 861
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
862
                print_to_err(
863
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
864 865 866 867 868 869 870
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
871

872 873 874 875 876
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
877
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
878 879 880 881 882 883 884 885
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
886
        ps0_cmd = ps_cmd % \
887 888
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
889
        ps1_cmd = ps_cmd % \
890 891
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
892 893 894 895

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
896

897 898
        print(ps0_cmd)
        print(ps1_cmd)
899 900
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
901

902
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
903
        ps0_proc = subprocess.Popen(
904 905 906 907
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
908
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
909
        ps1_proc = subprocess.Popen(
910 911 912 913
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
914

915
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
916

917 918 919 920 921
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
922
                   batch_merge_repeat=1,
923
                   log_name="",
924
                   devices="1"):
G
gongweibao 已提交
925

926 927 928 929 930 931
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

932 933
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
934

935 936 937 938
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
939 940
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
941

942
        if self.__use_cuda:
943
            cmd += " --use_cuda"
W
Wu Yi 已提交
944
            env_local = {
945 946 947 948 949 950 951 952
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
953 954 955
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
956 957 958
        else:
            env_local = {'CPU_NUM': '1'}

959
        # not use dgc in single card
960
        if len(devices) > 1 and self._use_dgc:
961 962
            cmd += " --use_dgc"

963 964 965
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

966 967 968
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
969 970
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
971

972
        if check_error_log:
973
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
974
            local_proc = subprocess.Popen(
975
                cmd.split(" "),
G
gongweibao 已提交
976
                stdout=subprocess.PIPE,
977
                stderr=err_log,
W
Wu Yi 已提交
978
                env=env_local)
G
gongweibao 已提交
979 980
        else:
            local_proc = subprocess.Popen(
981
                cmd.split(" "),
G
gongweibao 已提交
982
                stdout=subprocess.PIPE,
983
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
984
                env=env_local)
G
gongweibao 已提交
985

986 987 988 989 990 991
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
992
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
993

W
Wu Yi 已提交
994
        return pickle.loads(local_out)
995

996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010
    def _run_local_gloo(self,
                        model,
                        envs,
                        check_error_log=False,
                        batch_size=DEFAULT_BATCH_SIZE,
                        batch_merge_repeat=1,
                        log_name="",
                        devices="0"):
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
        result = self._run_cluster_gloo(model, envs, 'gloo', check_error_log,
                                        log_name)
        self._ps_endpoints = saved_endpoints
        return result

1011
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
1012
        # Run dist train to compare with local results
1013 1014
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
1015

X
Xin Pan 已提交
1016
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
1017

1018 1019 1020 1021 1022 1023 1024 1025
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
1026
        tr0_cmd = tr_cmd % \
1027
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1028
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1029
        tr1_cmd = tr_cmd % \
1030
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1031
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1032 1033 1034 1035

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1036 1037 1038
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1039 1040 1041
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1042 1043 1044
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1045
        if self.__use_cuda:
1046 1047 1048 1049 1050 1051 1052 1053 1054 1055
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1056

W
Wu Yi 已提交
1057 1058
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1059 1060
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
1061

1062
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
1063
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
1064
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
1065
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1066
            stderr=tr0_pipe,
X
Xin Pan 已提交
1067
            env=env0)
1068
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
1069
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
1070
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
1071
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1072
            stderr=tr1_pipe,
X
Xin Pan 已提交
1073 1074
            env=env1)

1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1087 1088
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1089

G
gongweibao 已提交
1090
        # close trainer file
1091 1092 1093 1094
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1095

W
Wu Yi 已提交
1096 1097
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1098

W
Wu Yi 已提交
1099 1100
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122
    def _get_gloo_trainer_cmd(self, model, ep, update_method, trainer_id,
                              trainer_num):
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

        tr_cmd = tr_cmd % \
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
        #assert self._use_reduce == False, "gloo not support _use_reduce"
        #assert self._use_reader_alloc == False, "gloo not support _use_reduce"
        if self._save_model:
            tr_cmd += " --save_model"
1123 1124
        if self._diff_batch:
            tr_cmd += " --diff_batch"
1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
        self.__use_cuda = False
        self.__use_xpu = False
        assert self.__use_cuda == False, "gloo not support use cuda"
        assert self.__use_xpu == False, "gloo not support use xpu"
        tr_cmd += " --use_cpu"
        env.update({
            "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
            "PADDLE_TRAINER_ID": "{}".format(trainer_id),
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_DISTRI_BACKEND": "gloo",
            "GLOG_v": "2",
        })

        assert self._use_dgc == False, "gloo not support use dgc"
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

        assert self._pipeline_mode == False, "gloo not support use pipeline"

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

        assert self._use_fleet_api == False, "gloo not support use fleet api"
        assert self._use_fleet_api_20 == False, "gloo not support use fleet api"
        return tr_cmd, env

1159 1160 1161
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1162 1163 1164 1165 1166 1167 1168
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1169
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1170 1171
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1172 1173

        if self._use_reduce:
1174
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1175
        if self._use_reader_alloc:
1176
            tr_cmd += " --use_reader_alloc"
1177 1178
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1179
        if self.__use_cuda:
1180 1181
            tr_cmd += " --use_cuda"
            env.update({
1182
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1183
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1184
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1185 1186 1187
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1188
            })
1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1202
        else:
1203
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1204

1205
        if self._use_dgc:
1206 1207
            tr_cmd += " --use_dgc"

1208 1209 1210
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1211 1212 1213
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1214 1215
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1216
        if self._mp_mode:
W
WangXi 已提交
1217
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1218 1219

        if self._nccl_comm_num > 1:
1220
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1221

1222 1223
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1224

1225
        if self._enable_backward_deps:
1226
            tr_cmd += " --enable_backward_deps"
1227

1228 1229 1230
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1231
        if self._use_fleet_api:
1232
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1233 1234 1235 1236
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1237 1238
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1239

1240 1241 1242
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1243
        return tr_cmd, env
W
Wu Yi 已提交
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295
    def _run_cluster_gloo(self, model, envs, update_method, check_error_log,
                          log_name):
        assert update_method == "gloo", "_run_cluster_gloo must have update_method: gloo, but get %s" % update_method
        assert not self._use_hallreduce, "_run_cluster_gloo must have _use_hallreduce = false"

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))

            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
            if check_error_log: print("outs[0]:", outs[0])
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1296 1297
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1298 1299
        if self._use_hallreduce:
            self._ps_endpoints = ""
1300 1301 1302

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1303
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1304 1305 1306 1307 1308 1309 1310
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1311
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1312

1313 1314
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1315

1316
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1317

1318 1319 1320 1321 1322 1323 1324 1325
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1326

1327
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1328

1329
            print_to_err(
1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1348 1349 1350
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1351

1352
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1353

1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1399
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1400 1401 1402 1403 1404 1405
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1406
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1407
            "FLAGS_rpc_retry_bind_port": "50",
1408
            "FLAGS_cudnn_deterministic": "1",
1409
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1410
            "http_proxy": "",
1411 1412
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1413 1414 1415
        }

        if check_error_log:
1416
            required_envs["GLOG_vmodule"] = \
1417 1418
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1419
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
1420
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1421 1422
            required_envs["GLOG_logtostderr"] = "1"

1423 1424 1425 1426 1427 1428 1429 1430 1431
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1432

1433 1434
        required_envs = self._get_required_envs(check_error_log, need_envs)

1435 1436 1437 1438 1439 1440
        if self._gloo_mode:
            local_losses \
                = self._run_local_gloo(model_file, required_envs,
                                  check_error_log, log_name=log_name)
        else:
            local_losses \
1441
            = self._run_local(model_file, required_envs,
1442 1443
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1444
        if self._nccl2_mode:
W
Wu Yi 已提交
1445 1446
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1447 1448
                    model_file,
                    required_envs,
1449 1450
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1451
                    log_name=log_name)
W
Wu Yi 已提交
1452 1453
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1454 1455
                    model_file,
                    required_envs,
1456 1457
                    update_method='nccl2',
                    check_error_log=check_error_log,
1458
                    log_name=log_name)
1459 1460 1461 1462 1463 1464 1465
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)
1466 1467 1468 1469 1470 1471 1472 1473
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
                log_name=log_name)
1474

1475 1476 1477
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1478 1479
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1480
                model_file, required_envs, check_error_log, log_name=log_name)
1481 1482

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1483 1484 1485
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1486 1487 1488 1489
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1490 1491
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1492 1493 1494 1495 1496 1497 1498

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1499

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1511
                devices="0,1")
1512 1513 1514 1515 1516 1517 1518

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1519
                devices="0,1")
1520 1521 1522 1523 1524 1525 1526 1527

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)