test_dist_base.py 48.2 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46 47 48 49 50 51 52 53
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
54 55
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
56
    if six.PY2:
57
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
58
    else:
59
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
60 61


62 63 64 65
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
66
class TestDistRunnerBase(object):
W
Wu Yi 已提交
67 68 69
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
70 71
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
72 73 74
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

75
    @staticmethod
W
Wu Yi 已提交
76 77 78 79 80
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
81
                       dc_asgd=False,
82
                       current_endpoint=None,
T
tangwei12 已提交
83 84
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
85
        # NOTE: import fluid until runtime, or else forking processes will cause error.
86
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
87
        config.enable_dc_asgd = dc_asgd
88
        config.sync_mode = sync_mode
T
tangwei12 已提交
89 90
        config.runtime_split_send_recv = hogwild_mode

91 92
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
93
        # config.runtime_split_send_recv = True
94
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
95 96 97 98
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
99
            trainers=trainers,
T
tangwei12 已提交
100
            sync_mode=sync_mode,
101
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
102 103
        return t

W
Wu Yi 已提交
104
    def run_pserver(self, args):
W
Wu Yi 已提交
105
        self.lr = args.lr
106
        self.get_model(batch_size=args.batch_size)
107
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
108 109 110 111 112 113 114 115 116

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
117 118 119
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
120

T
typhoonzero 已提交
121 122 123
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
124
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
125
        exe.run(pserver_prog)
126
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
127

128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss = exe.run(fluid.default_main_program(), fetch_list=[avg_cost])
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

189 190
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
191 192 193 194 195 196 197 198

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
199
        dist_strategy.fuse_memory_size = 1  # MB
200
        dist_strategy.fuse_laryer_size = 1
201 202 203 204
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
205 206
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
207 208 209

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
210
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
211 212
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
213 214

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
215
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
216 217 218 219

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

220 221 222 223 224 225 226 227 228 229
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
230 231 232 233 234 235 236 237 238 239

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

240 241 242 243 244 245 246
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

247 248 249 250 251 252 253 254 255 256 257 258 259 260
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

261
        print_to_err(type(self).__name__, "begin to train on trainer")
262 263 264 265 266 267
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
268 269
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
270 271 272 273 274 275

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

306
    def run_trainer(self, args):
W
Wu Yi 已提交
307
        self.lr = args.lr
W
Wu Yi 已提交
308 309 310
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
311 312 313
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
314 315 316
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
317

W
Wu Yi 已提交
318
        if args.update_method == "pserver":
319
            print_to_err(
320 321
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
322 323 324 325 326 327 328 329 330
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
331
            trainer_prog = t.get_trainer_program()
332
            print_to_err(
333 334
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
335
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
336 337 338
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
339
            config.nccl_comm_num = args.nccl_comm_num
340 341 342
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
343
            print_to_err(
344 345
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
346 347 348 349 350 351 352
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
353
            print_to_err(
354 355
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
356
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
357
        else:
358
            print_to_err(
359 360
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
361
            trainer_prog = fluid.default_main_program()
362
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
363

364 365 366
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

367
        if args.use_cuda:
368 369
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
370 371 372
        else:
            place = fluid.CPUPlace()

373 374
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
375
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
376

W
Wu Yi 已提交
377 378
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
379

W
Wu Yi 已提交
380
        build_stra = fluid.BuildStrategy()
381 382 383
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
384

385 386 387 388
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
389 390 391
        if args.hogwild:
            build_stra.async_mode = True

392 393 394
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
395 396 397 398 399
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
400
        pass_builder = None
X
Xin Pan 已提交
401
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
402
            pass_builder = build_stra._finalize_strategy_and_create_passes()
403
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
404
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
405

W
Wu Yi 已提交
406
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
407 408
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
409
        else:
W
Wu Yi 已提交
410
            # case args.update_method == "nccl2_reduce_layer":
411 412
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
413

414
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
415
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
416
            loss_name=avg_cost.name,
W
Wu Yi 已提交
417
            build_strategy=build_stra,
W
Wu Yi 已提交
418
            exec_strategy=exec_strategy)
419
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
420 421 422 423 424 425 426

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
427
        reader_generator = train_reader()
T
typhoonzero 已提交
428

429 430
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
431
            if args.update_method != "local" and args.use_reader_alloc:
432 433 434 435 436 437 438
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
439

440
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
441
        out_losses = []
442
        for i in six.moves.xrange(RUN_STEP):
443 444
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
445
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
446
            out_losses.append(loss[0])
447 448
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
449

450
        print_to_out(out_losses)
T
typhoonzero 已提交
451 452


453 454 455 456 457 458 459 460 461
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

462 463 464 465 466 467 468 469 470 471
    def _get_data(self, batch, args):
        if args.update_method != "local":
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

472
    def run_trainer(self, args):
Y
Yan Xu 已提交
473

474
        seed = 90
475 476 477 478 479 480 481 482
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            assert ("Only support CUDAPlace or XPUPlace for now.")
483 484 485 486

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
487 488
            np.random.seed(seed)
            import random
489
            random.seed(seed)
490 491
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
492

493 494
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
495 496 497 498 499
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
500
                print_to_err(
501 502
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
503
                dygraph.parallel.prepare_context(strategy)
Y
Yan Xu 已提交
504
                model = dygraph.parallel.DataParallel(model, strategy)
505
                print_to_err(type(self).__name__, "model built in dygraph")
506
            out_losses = []
507
            print_to_err(type(self).__name__, "begin to run dygraph training")
508
            for step_id, data in enumerate(train_reader()):
509
                data = self._get_data(data, args)
510 511 512
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
513
                if step_id % 10 == 0:
514
                    print_to_err(
515
                        type(self).__name__,
516
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
517
                out_losses.append(loss.numpy())
518 519 520 521

                loss.backward()

                opt.minimize(loss)
522 523
                if not args.accumulate_gradient:
                    model.clear_gradients()
524
        print_to_out(out_losses)
525

526 527 528 529 530 531 532 533 534
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
535
        random.seed(seed)
536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
        if args.update_method == "nccl2":
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
        if args.update_method == "nccl2":
            model = paddle.DataParallel(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

562
    def run_use_fleet_api_trainer(self, args):
563 564 565 566 567 568 569 570 571 572
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
573
        random.seed(seed)
574 575 576 577
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
578
        if args.update_method == "nccl2" or "bkcl":
579 580 581 582
            fleet.init(is_collective=True)

        # 4. train model
        model, train_reader, opt = self.get_model()
583
        if args.update_method == "nccl2" or "bkcl":
584 585 586 587 588 589 590 591 592 593 594 595 596 597
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
598 599
            if not args.accumulate_gradient:
                opt.clear_grad()
600 601
        print_to_out(out_losses)

602

T
typhoonzero 已提交
603
def runtime_main(test_class):
W
Wu Yi 已提交
604 605 606 607
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
608 609 610 611
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
612
        choices=["pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
613 614
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
615
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
616 617
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
618
    parser.add_argument('--use_pipeline', action='store_true')
619
    parser.add_argument('--use_fleet_api', action='store_true')
620 621
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
622
    parser.add_argument(
623
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
624 625 626
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
627
    parser.add_argument('--use_cuda', action='store_true')
628
    parser.add_argument('--use_xpu', action='store_true')
629
    parser.add_argument('--use_dgc', action='store_true')
630
    parser.add_argument('--accumulate_gradient', action='store_true')
W
Wu Yi 已提交
631
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
632
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
633
    parser.add_argument('--hogwild', action='store_true')
634
    parser.add_argument('--save_model', action='store_true')
635
    parser.add_argument(
W
Wu Yi 已提交
636
        '--use_reader_alloc', action='store_true', required=False)
637
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
638
    parser.add_argument('--lr', required=False, type=float, default=0.001)
639 640
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
641 642 643 644 645
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
646
    parser.add_argument('--sync_batch_norm', action='store_true')
647 648 649 650 651
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
652 653

    args = parser.parse_args()
T
typhoonzero 已提交
654 655

    model = test_class()
W
Wu Yi 已提交
656
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
657
        model.run_pserver(args)
658 659
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
660 661
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
662
    else:
663
        model.run_trainer(args)
X
Xin Pan 已提交
664

M
minqiyang 已提交
665

M
minqiyang 已提交
666
import paddle.compat as cpt
Y
Yancey1989 已提交
667 668
import socket
from contextlib import closing
M
minqiyang 已提交
669

X
Xin Pan 已提交
670 671

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
672 673 674
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

675 676 677
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
678
            self.__use_xpu = False
679
            self._use_dgc = False
680 681
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
682 683 684 685 686
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
687 688 689 690 691
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
692 693 694 695
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
696

X
Xin Pan 已提交
697 698 699
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
700
        self._port_set = set()
M
minqiyang 已提交
701
        self._python_interp = sys.executable
W
Wu Yi 已提交
702
        self._sync_mode = True
T
tangwei12 已提交
703
        self._hogwild_mode = False
704
        self._enforce_place = None
W
Wu Yi 已提交
705
        self._use_reduce = False
W
Wu Yi 已提交
706
        self._dc_asgd = False  # must use with async mode
707
        self._use_reader_alloc = True
W
Wu Yi 已提交
708
        self._nccl2_mode = False
709
        self._bkcl_mode = False
710
        self._pipeline_mode = False
711
        self._mp_mode = False
W
Wu Yi 已提交
712 713 714 715 716
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
717
        self._lr = 0.001
718
        self._use_dgc = False
719
        self._dygraph = False
720
        self._nccl_comm_num = 1
721
        self._enable_backward_deps = False
722
        self._use_fleet_api = False
723 724
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
725
        self._use_hallreduce = False
726
        self._save_model = False
727
        self._fuse_all_reduce = None
728
        self._accumulate_gradient = False
W
Wu Yi 已提交
729
        self._setup_config()
730 731 732 733 734 735 736 737 738 739 740 741 742 743

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

744
        self._after_setup_config()
X
Xin Pan 已提交
745

Y
Yancey1989 已提交
746
    def _find_free_port(self):
Y
Yancey1989 已提交
747 748 749 750
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
751
                print_to_err(
752
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
753 754 755 756 757 758 759
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
760

761 762 763 764 765
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
766
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
767 768 769 770 771 772 773 774
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
775
        ps0_cmd = ps_cmd % \
776 777
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
778
        ps1_cmd = ps_cmd % \
779 780
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
781 782 783 784

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
785

786 787
        print(ps0_cmd)
        print(ps1_cmd)
788 789
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
790

791
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
792
        ps0_proc = subprocess.Popen(
793 794 795 796
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
797
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
798
        ps1_proc = subprocess.Popen(
799 800 801 802
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
803

804
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
805

806 807 808 809 810
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
811
                   batch_merge_repeat=1,
812
                   log_name="",
813
                   devices="0"):
G
gongweibao 已提交
814

815 816 817 818 819 820
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

821 822
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
823

824 825 826 827
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
828 829
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
830

831
        if self.__use_cuda:
832
            cmd += " --use_cuda"
W
Wu Yi 已提交
833
            env_local = {
834 835 836 837 838 839 840 841
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
842 843 844
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
845 846 847
        else:
            env_local = {'CPU_NUM': '1'}

848
        # not use dgc in single card
849
        if len(devices) > 1 and self._use_dgc:
850 851
            cmd += " --use_dgc"

852 853 854
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

W
Wu Yi 已提交
855 856
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
857

858
        if check_error_log:
859
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
860
            local_proc = subprocess.Popen(
861
                cmd.split(" "),
G
gongweibao 已提交
862
                stdout=subprocess.PIPE,
863
                stderr=err_log,
W
Wu Yi 已提交
864
                env=env_local)
G
gongweibao 已提交
865 866
        else:
            local_proc = subprocess.Popen(
867
                cmd.split(" "),
G
gongweibao 已提交
868
                stdout=subprocess.PIPE,
869
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
870
                env=env_local)
G
gongweibao 已提交
871

872 873 874 875 876 877
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
878
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
879

W
Wu Yi 已提交
880
        return pickle.loads(local_out)
881

882
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
883
        # Run dist train to compare with local results
884 885
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
886

X
Xin Pan 已提交
887
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
888

889 890 891 892 893 894 895 896
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
897
        tr0_cmd = tr_cmd % \
898
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
899
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
900
        tr1_cmd = tr_cmd % \
901
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
902
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
903 904 905 906

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
907 908 909
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
910 911 912
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
913 914 915
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
916
        if self.__use_cuda:
917 918 919 920 921 922 923 924 925 926
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
927

W
Wu Yi 已提交
928 929
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
930 931
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
932

933
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
934
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
935
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
936
            stdout=subprocess.PIPE,
G
gongweibao 已提交
937
            stderr=tr0_pipe,
X
Xin Pan 已提交
938
            env=env0)
939
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
940
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
941
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
942
            stdout=subprocess.PIPE,
G
gongweibao 已提交
943
            stderr=tr1_pipe,
X
Xin Pan 已提交
944 945
            env=env1)

946 947 948 949 950 951 952 953 954 955 956 957
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

958 959
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
960

G
gongweibao 已提交
961
        # close trainer file
962 963 964 965
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
966

W
Wu Yi 已提交
967 968
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
969

W
Wu Yi 已提交
970 971
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

972 973 974
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
975 976 977 978 979 980 981
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

982
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
983 984
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
985 986

        if self._use_reduce:
987
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
988
        if self._use_reader_alloc:
989
            tr_cmd += " --use_reader_alloc"
990 991
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
992
        if self.__use_cuda:
993 994
            tr_cmd += " --use_cuda"
            env.update({
995
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
996
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
997
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
998 999 1000
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1001
            })
1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1015
        else:
1016
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1017

1018
        if self._use_dgc:
1019 1020
            tr_cmd += " --use_dgc"

1021 1022 1023
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1024 1025
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1026
        if self._mp_mode:
W
WangXi 已提交
1027
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1028 1029

        if self._nccl_comm_num > 1:
1030
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1031

1032 1033
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1034

1035
        if self._enable_backward_deps:
1036
            tr_cmd += " --enable_backward_deps"
1037

1038 1039 1040
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1041 1042
        if self._use_fleet_api:
            tr_cmd += " --use_fleet_api"
1043 1044 1045 1046
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1047 1048
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1049

1050 1051 1052
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1053
        return tr_cmd, env
W
Wu Yi 已提交
1054

1055 1056
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1057 1058
        if self._use_hallreduce:
            self._ps_endpoints = ""
1059 1060 1061

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1062
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1063 1064 1065 1066 1067 1068 1069
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1070
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1071

1072 1073
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1074

1075
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1076

1077 1078 1079 1080 1081 1082 1083 1084
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1085

1086
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1087

1088
            print_to_err(
1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1107 1108 1109
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1110
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1111

1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1157
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1158 1159 1160 1161 1162 1163
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1164
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1165
            "FLAGS_rpc_retry_bind_port": "50",
1166
            "FLAGS_cudnn_deterministic": "1",
1167
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1168
            "http_proxy": "",
1169 1170
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1171 1172 1173
        }

        if check_error_log:
1174
            required_envs["GLOG_vmodule"] = \
1175 1176
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1177 1178
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
                "grpc_server=10,request_handler_impl=10"
1179 1180
            required_envs["GLOG_logtostderr"] = "1"

1181 1182 1183 1184 1185 1186 1187 1188 1189
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1190

1191 1192
        required_envs = self._get_required_envs(check_error_log, need_envs)

T
tangwei12 已提交
1193
        local_losses \
1194
            = self._run_local(model_file, required_envs,
1195 1196
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1197
        if self._nccl2_mode:
W
Wu Yi 已提交
1198 1199
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1200 1201
                    model_file,
                    required_envs,
1202 1203
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1204
                    log_name=log_name)
W
Wu Yi 已提交
1205 1206
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1207 1208
                    model_file,
                    required_envs,
1209 1210
                    update_method='nccl2',
                    check_error_log=check_error_log,
1211
                    log_name=log_name)
1212 1213 1214 1215 1216 1217 1218 1219
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)

1220 1221 1222
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1223 1224
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1225
                model_file, required_envs, check_error_log, log_name=log_name)
1226 1227

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1228 1229 1230
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1231 1232 1233 1234
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1235 1236
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1237 1238 1239 1240 1241 1242 1243

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1244

1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1256
                devices="0,1")
1257 1258 1259 1260 1261 1262 1263

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1264
                devices="0,1")
1265 1266 1267 1268 1269 1270 1271 1272

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)