test_dist_base.py 30.7 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17 18 19 20 21 22
import time

import unittest
import os
import sys
import signal
import subprocess
23
import six
W
Wu Yi 已提交
24
import argparse
W
Wu Yi 已提交
25 26
import pickle
import numpy as np
27
import time
28
import paddle.fluid as fluid
29
from paddle.fluid import compiler
30 31 32
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
33

34 35 36
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
37
RUN_STEP = 5
38
DEFAULT_BATCH_SIZE = 2
39

T
typhoonzero 已提交
40

41 42 43 44 45 46 47 48
def print_to_out(out_losses):
    if six.PY2:
        print(pickle.dumps(out_losses))
    else:
        sys.stdout.buffer.write(pickle.dumps(out_losses))


def print_to_err(class_name, log_str):
49 50
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
G
guru4elephant 已提交
51
    if six.PY2:
52
        sys.stderr.write(pickle.dumps(print_str))
G
guru4elephant 已提交
53
    else:
54
        sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
55 56


57 58 59 60
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
61
class TestDistRunnerBase(object):
W
Wu Yi 已提交
62 63 64
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
65 66
                  single_device=False,
                  use_dgc=False):
T
typhoonzero 已提交
67 68 69
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

70
    @staticmethod
W
Wu Yi 已提交
71 72 73 74 75
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
76
                       dc_asgd=False,
77 78
                       current_endpoint=None,
                       nccl_comm_num=1):
T
typhoonzero 已提交
79
        # NOTE: import fluid until runtime, or else forking processes will cause error.
80
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
81
        config.enable_dc_asgd = dc_asgd
82
        config.sync_mode = sync_mode
83 84
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
85
        # config.runtime_split_send_recv = True
86
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
87 88 89 90
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
91
            trainers=trainers,
92
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
93 94
        return t

W
Wu Yi 已提交
95
    def run_pserver(self, args):
W
Wu Yi 已提交
96
        self.lr = args.lr
97
        self.get_model(batch_size=args.batch_size)
98
        # NOTE: pserver should not call memory optimize
W
Wu Yi 已提交
99 100
        t = self.get_transpiler(args.trainer_id,
                                fluid.default_main_program(), args.endpoints,
W
Wu Yi 已提交
101
                                args.trainers, args.sync_mode, args.dc_asgd)
W
Wu Yi 已提交
102 103 104
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
105

T
typhoonzero 已提交
106 107 108
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
109
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
110
        exe.run(pserver_prog)
111
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    def run_gpu_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2"

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
        dist_strategy.fuse_memory_size = 1  #MB
        dist_strategy.fuse_laryer_size = 1

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
128
        print_to_err("gpu_fleet", "fleet.node_num:")
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
        #"fleet.node_id:", fleet.node_id(),
        #"fleet.trainer_num:", fleet.worker_num())

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

164
        print_to_err(type(self).__name__, "begin to train on trainer")
165 166 167 168 169 170
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
171 172
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
173 174 175 176 177 178

        if six.PY2:
            print(pickle.dumps(out_losses))
        else:
            sys.stdout.buffer.write(pickle.dumps(out_losses))

179
    def run_trainer(self, args):
W
Wu Yi 已提交
180
        self.lr = args.lr
W
Wu Yi 已提交
181 182 183
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
184 185 186
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
187 188 189
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
190

W
Wu Yi 已提交
191
        if args.update_method == "pserver":
192
            print_to_err(
193 194
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
W
Wu Yi 已提交
195 196 197
            t = self.get_transpiler(args.trainer_id,
                                    fluid.default_main_program(),
                                    args.endpoints, args.trainers,
W
Wu Yi 已提交
198
                                    args.sync_mode, args.dc_asgd)
T
typhoonzero 已提交
199
            trainer_prog = t.get_trainer_program()
200
            print_to_err(
201 202
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
203
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
204 205 206
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
207
            config.nccl_comm_num = args.nccl_comm_num
208 209 210
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
211
            print_to_err(
212 213
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
214 215 216 217 218 219 220
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
221
            print_to_err(
222 223
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
224
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
225
        else:
226
            print_to_err(
227 228
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
229
            trainer_prog = fluid.default_main_program()
230
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
231

232
        if args.use_cuda:
233 234
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
235 236 237
        else:
            place = fluid.CPUPlace()

238 239
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
240
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
241

W
Wu Yi 已提交
242 243
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
244

W
Wu Yi 已提交
245
        build_stra = fluid.BuildStrategy()
246 247 248
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
249

250 251 252
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
253 254 255 256 257
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
258
        pass_builder = None
X
Xin Pan 已提交
259
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
260
            pass_builder = build_stra._finalize_strategy_and_create_passes()
261
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
262
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
263

W
Wu Yi 已提交
264
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
265 266
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
267
        else:
W
Wu Yi 已提交
268
            # case args.update_method == "nccl2_reduce_layer":
269 270
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
271

272
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
273
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
274
            loss_name=avg_cost.name,
W
Wu Yi 已提交
275
            build_strategy=build_stra,
W
Wu Yi 已提交
276
            exec_strategy=exec_strategy)
277
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
278 279 280 281 282 283 284

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
285
        reader_generator = train_reader()
T
typhoonzero 已提交
286

287 288
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
289
            if args.update_method != "local" and args.use_reader_alloc:
290 291 292 293 294 295 296
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
297

298
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
299
        out_losses = []
300
        for i in six.moves.xrange(RUN_STEP):
301 302
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
303
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
304
            out_losses.append(loss[0])
305 306
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
307

308
        print_to_out(out_losses)
T
typhoonzero 已提交
309 310


311 312 313 314 315 316 317 318 319 320
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

    def run_trainer(self, args):
Y
Yan Xu 已提交
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
        seed = 90
        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = fluid.CUDAPlace(device_id)

        def _get_data(batch):
            if args.update_method != "local":
                new_batch = []
                for offset, item in enumerate(batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return batch

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
339 340 341
            np.random.seed(seed)
            import random
            random.seed = seed
342 343
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
344

345 346 347 348 349 350
            if args.update_method == "nccl2":
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
351
                print_to_err(
352 353
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
354
                dygraph.parallel.prepare_context(strategy)
Y
Yan Xu 已提交
355
                model = dygraph.parallel.DataParallel(model, strategy)
356
                print_to_err(type(self).__name__, "model built in dygraph")
357
            out_losses = []
358
            print_to_err(type(self).__name__, "begin to run dygraph training")
359 360 361 362 363
            for step_id, data in enumerate(train_reader()):
                data = _get_data(data)
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
364
                if step_id % 10 == 0:
365
                    print_to_err(
366
                        type(self).__name__,
367
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
368
                out_losses.append(loss.numpy())
369

Y
Yan Xu 已提交
370 371 372
                # FIXME(Yancey1989): scale the loss inplace
                if args.update_method == "nccl2":
                    loss = model.scale_loss(loss)
373 374

                loss.backward()
Y
Yan Xu 已提交
375 376
                if args.update_method == "nccl2":
                    model.apply_collective_grads()
377 378 379

                opt.minimize(loss)
                model.clear_gradients()
380
        print_to_out(out_losses)
381 382


T
typhoonzero 已提交
383
def runtime_main(test_class):
W
Wu Yi 已提交
384 385 386 387
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
388 389 390 391
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
W
Wu Yi 已提交
392
        choices=["pserver", "nccl2", "local", "nccl2_reduce_layer"])
W
Wu Yi 已提交
393 394
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
395
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
396 397
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
398
    parser.add_argument('--gpu_fleet_api', action='store_true')
399
    parser.add_argument(
400
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
401 402 403
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
404
    parser.add_argument('--use_cuda', action='store_true')
405
    parser.add_argument('--use_dgc', action='store_true')
W
Wu Yi 已提交
406
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
407
    parser.add_argument('--dc_asgd', action='store_true')
408
    parser.add_argument(
W
Wu Yi 已提交
409
        '--use_reader_alloc', action='store_true', required=False)
410
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
411
    parser.add_argument('--lr', required=False, type=float, default=0.001)
412 413
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
414 415 416 417 418
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
W
Wu Yi 已提交
419 420

    args = parser.parse_args()
T
typhoonzero 已提交
421 422

    model = test_class()
W
Wu Yi 已提交
423
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
424
        model.run_pserver(args)
425 426
    elif args.gpu_fleet_api:
        model.run_gpu_fleet_api_trainer(args)
T
typhoonzero 已提交
427
    else:
428
        model.run_trainer(args)
X
Xin Pan 已提交
429

M
minqiyang 已提交
430

M
minqiyang 已提交
431
import paddle.compat as cpt
Y
Yancey1989 已提交
432 433
import socket
from contextlib import closing
M
minqiyang 已提交
434

X
Xin Pan 已提交
435 436

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
437 438 439
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

440 441 442
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
443
            self._use_dgc = False
444 445 446 447 448 449 450
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
451 452 453 454
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
455

X
Xin Pan 已提交
456 457 458
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
459
        self._port_set = set()
Y
Yancey1989 已提交
460 461
        self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
            self._find_free_port(), self._find_free_port())
M
minqiyang 已提交
462
        self._python_interp = sys.executable
W
Wu Yi 已提交
463
        self._sync_mode = True
464
        self._enforce_place = None
W
Wu Yi 已提交
465
        self._use_reduce = False
W
Wu Yi 已提交
466
        self._dc_asgd = False  # must use with async mode
467
        self._use_reader_alloc = True
W
Wu Yi 已提交
468
        self._nccl2_mode = False
469
        self._mp_mode = False
W
Wu Yi 已提交
470 471 472 473 474
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
475
        self._lr = 0.001
476
        self._use_dgc = False
477
        self._dygraph = False
478
        self._nccl_comm_num = 1
479
        self._enable_backward_deps = False
480
        self._gpu_fleet_api = False
481
        self._use_hallreduce = False
W
Wu Yi 已提交
482
        self._setup_config()
483
        self._after_setup_config()
X
Xin Pan 已提交
484

Y
Yancey1989 已提交
485
    def _find_free_port(self):
Y
Yancey1989 已提交
486 487 488 489
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
490
                print_to_err(
491
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
492 493 494 495 496 497 498
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
499

500
    def start_pserver(self, model_file, check_error_log, required_envs):
X
Xin Pan 已提交
501
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
502 503 504 505 506 507 508 509
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
510
        ps0_cmd = ps_cmd % \
511 512
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
513
        ps1_cmd = ps_cmd % \
514 515
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
516 517 518 519

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
520

521 522
        print(ps0_cmd)
        print(ps1_cmd)
M
minqiyang 已提交
523 524
        ps0_pipe = open("/tmp/ps0_err.log", "wb")
        ps1_pipe = open("/tmp/ps1_err.log", "wb")
G
gongweibao 已提交
525

526
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
527
        ps0_proc = subprocess.Popen(
528 529 530 531
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
532
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
533
        ps1_proc = subprocess.Popen(
534 535 536 537
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
538

539
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
540

541 542 543 544 545 546
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
                   batch_merge_repeat=1):
G
gongweibao 已提交
547

548 549 550 551 552 553 554 555
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

        cmd += " %s --role trainer --lr %f" % (model, self._lr)

556 557 558 559
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
560 561
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
562

563
        if self.__use_cuda:
564
            cmd += " --use_cuda"
W
Wu Yi 已提交
565 566 567 568 569
            env_local = {
                "CUDA_VISIBLE_DEVICES": "0",
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
570 571 572
        else:
            env_local = {'CPU_NUM': '1'}

W
Wu Yi 已提交
573 574
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
575

576
        if check_error_log:
577
            err_log = open("/tmp/trainer.err.log", "wb")
G
gongweibao 已提交
578
            local_proc = subprocess.Popen(
579
                cmd.split(" "),
G
gongweibao 已提交
580
                stdout=subprocess.PIPE,
581
                stderr=err_log,
W
Wu Yi 已提交
582
                env=env_local)
G
gongweibao 已提交
583 584
        else:
            local_proc = subprocess.Popen(
585
                cmd.split(" "),
G
gongweibao 已提交
586
                stdout=subprocess.PIPE,
587
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
588
                env=env_local)
G
gongweibao 已提交
589

590 591 592 593 594 595
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
596
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
597

W
Wu Yi 已提交
598
        return pickle.loads(local_out)
599 600

    def _run_cluster(self, model, envs, check_error_log):
X
Xin Pan 已提交
601
        # Run dist train to compare with local results
602 603
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model,
                                                          check_error_log, envs)
W
Wu Yi 已提交
604

X
Xin Pan 已提交
605
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
606

607 608 609 610 611 612 613 614
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
615
        tr0_cmd = tr_cmd % \
616
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
617
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
618
        tr1_cmd = tr_cmd % \
619
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
620
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
621 622 623 624 625 626 627

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
628 629 630
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
631
        if self.__use_cuda:
632 633 634 635 636 637 638 639 640 641
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
642

W
Wu Yi 已提交
643 644
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
645 646
        tr0_pipe = open("/tmp/tr0_err.log", "wb")
        tr1_pipe = open("/tmp/tr1_err.log", "wb")
G
gongweibao 已提交
647

648
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
649
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
650
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
651
            stdout=subprocess.PIPE,
G
gongweibao 已提交
652
            stderr=tr0_pipe,
X
Xin Pan 已提交
653
            env=env0)
654
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
655
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
656
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
657
            stdout=subprocess.PIPE,
G
gongweibao 已提交
658
            stderr=tr1_pipe,
X
Xin Pan 已提交
659 660
            env=env1)

661 662 663 664 665 666 667 668 669 670 671 672
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

673 674
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
675

G
gongweibao 已提交
676
        # close trainer file
677 678 679 680
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
681

W
Wu Yi 已提交
682 683
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
684

W
Wu Yi 已提交
685 686
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

687 688 689
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
690 691 692 693 694 695 696
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

697
        tr_cmd = tr_cmd % \
W
Wu Yi 已提交
698
                  (self._python_interp, model, self._ps_endpoints,
699
                   trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
700 701

        if self._use_reduce:
702
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
703
        if self._use_reader_alloc:
704
            tr_cmd += " --use_reader_alloc"
W
Wu Yi 已提交
705
        if self.__use_cuda:
706 707 708 709
            tr_cmd += " --use_cuda"
            env.update({
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
710 711 712
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
713
            })
W
Wu Yi 已提交
714
        else:
715
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
716

717
        if self._use_dgc:
718 719 720 721
            tr_cmd += " --use_dgc"

        if self._mp_mode:
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
722 723

        if self._nccl_comm_num > 1:
724
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
725

726 727
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
728

729
        if self._enable_backward_deps:
730
            tr_cmd += " --enable_backward_deps"
731

732 733 734
        if self._gpu_fleet_api:
            tr_cmd += " --gpu_fleet_api"

735 736 737
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

738
        return tr_cmd, env
W
Wu Yi 已提交
739

740 741 742 743 744 745 746
    def _run_cluster_nccl2(self, model, envs, nccl2_reduce_layer,
                           check_error_log):
        if self._use_hallreduce:
            self._ps_endpoints = ""
            for i in range(0, 4):
                self._ps_endpoints += "127.0.0.1:%s," % (self._find_free_port())
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
747

748 749 750 751 752 753
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        if nccl2_reduce_layer:
            update_method = "nccl2_reduce_layer"
        else:
            update_method = "nccl2"
W
Wu Yi 已提交
754

755
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
756

757 758 759 760 761 762 763 764
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
765

766
            tr_pipe = open("/tmp/tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
767

768
            print_to_err(
769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

787 788 789
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
790
        return pickle.loads(outs[0]), pickle.loads(outs[1])
791 792 793 794 795 796 797 798 799 800 801 802

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={}):
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
803
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
804
            "FLAGS_cudnn_deterministic": "1",
W
Wu Yi 已提交
805
            "http_proxy": "",
806 807
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
808 809 810 811 812
        }

        required_envs.update(need_envs)

        if check_error_log:
813
            required_envs["GLOG_v"] = "10"
814 815 816 817
            required_envs["GLOG_logtostderr"] = "1"

        local_losses\
            = self._run_local(model_file, required_envs,
W
Wu Yi 已提交
818
                                check_error_log)
W
Wu Yi 已提交
819
        if self._nccl2_mode:
W
Wu Yi 已提交
820 821 822 823 824 825
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
                    model_file, required_envs, True, check_error_log)
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
                    model_file, required_envs, False, check_error_log)
W
Wu Yi 已提交
826 827 828
        else:
            tr0_losses, tr1_losses = self._run_cluster(
                model_file, required_envs, check_error_log)
829 830

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
831 832 833
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
Y
Yan Xu 已提交
834
            dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
835 836
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)