test_dist_base.py 56.8 KB
Newer Older
X
Xin Pan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
X
Xin Pan 已提交
16 17
import time

18
import ast
X
Xin Pan 已提交
19 20 21 22 23
import unittest
import os
import sys
import signal
import subprocess
24
import six
W
Wu Yi 已提交
25
import argparse
W
Wu Yi 已提交
26
import pickle
27
import random
W
Wu Yi 已提交
28
import numpy as np
29
import time
30 31

import paddle
32
import paddle.fluid as fluid
33
from paddle.fluid import compiler
34 35 36
import paddle.fluid.dygraph as dygraph
from paddle.fluid.dygraph.base import to_variable
from paddle.fluid.dygraph.parallel import DataParallel
37

38 39 40
from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy
import paddle.fluid.incubate.fleet.base.role_maker as role_maker

Y
Yan Xu 已提交
41
RUN_STEP = 5
42
DEFAULT_BATCH_SIZE = 2
43
DIST_UT_PORT = 0
44

T
typhoonzero 已提交
45

46
def print_to_out(out_losses):
T
tianshuo78520a 已提交
47
    sys.stdout.buffer.write(pickle.dumps(out_losses))
48 49 50


def print_to_err(class_name, log_str):
51 52
    localtime = time.asctime(time.localtime(time.time()))
    print_str = localtime + "\t" + class_name + "\t" + log_str
T
tianshuo78520a 已提交
53
    sys.stderr.buffer.write(pickle.dumps(print_str))
G
guru4elephant 已提交
54 55


56 57 58 59
def eprint(*args, **kwargs):
    print(*args, file=sys.stderr, **kwargs)


T
typhoonzero 已提交
60
class TestDistRunnerBase(object):
W
Wu Yi 已提交
61 62 63
    def get_model(self,
                  batch_size=DEFAULT_BATCH_SIZE,
                  lr=0.1,
64
                  single_device=False,
J
Jiangxinz 已提交
65 66
                  use_dgc=False,
                  dist_strategy=None):
T
typhoonzero 已提交
67 68 69
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

70
    @staticmethod
W
Wu Yi 已提交
71 72 73 74 75
    def get_transpiler(trainer_id,
                       main_program,
                       pserver_endpoints,
                       trainers,
                       sync_mode,
76
                       dc_asgd=False,
77
                       current_endpoint=None,
T
tangwei12 已提交
78 79
                       nccl_comm_num=1,
                       hogwild_mode=False):
T
typhoonzero 已提交
80
        # NOTE: import fluid until runtime, or else forking processes will cause error.
81
        config = fluid.DistributeTranspilerConfig()
W
Wu Yi 已提交
82
        config.enable_dc_asgd = dc_asgd
83
        config.sync_mode = sync_mode
T
tangwei12 已提交
84 85
        config.runtime_split_send_recv = hogwild_mode

86 87
        if nccl_comm_num > 1:
            config.nccl_comm_num = nccl_comm_num
88
        # config.runtime_split_send_recv = True
89
        t = fluid.DistributeTranspiler(config=config)
T
typhoonzero 已提交
90 91 92 93
        t.transpile(
            trainer_id=trainer_id,
            program=main_program,
            pservers=pserver_endpoints,
W
Wu Yi 已提交
94
            trainers=trainers,
T
tangwei12 已提交
95
            sync_mode=sync_mode,
96
            current_endpoint=current_endpoint)
T
typhoonzero 已提交
97 98
        return t

99 100 101 102 103 104 105 106 107
    @staticmethod
    def get_lr_scheduler(program):
        lr_sheduler = None
        if hasattr(program, 'lr_sheduler'):
            from paddle.optimizer.lr import LRScheduler
            lr_sheduler = program.lr_sheduler
            assert isinstance(lr_sheduler, LRScheduler), "must be LRScheduler"
        return lr_sheduler

W
Wu Yi 已提交
108
    def run_pserver(self, args):
W
Wu Yi 已提交
109
        self.lr = args.lr
110
        self.get_model(batch_size=args.batch_size)
111
        # NOTE: pserver should not call memory optimize
T
tangwei12 已提交
112 113 114 115 116 117 118 119 120

        t = self.get_transpiler(
            trainer_id=args.trainer_id,
            main_program=fluid.default_main_program(),
            pserver_endpoints=args.endpoints,
            trainers=args.trainers,
            sync_mode=args.sync_mode,
            dc_asgd=args.dc_asgd,
            hogwild_mode=args.hogwild)
W
Wu Yi 已提交
121 122 123
        pserver_prog = t.get_pserver_program(args.current_endpoint)
        startup_prog = t.get_startup_program(args.current_endpoint,
                                             pserver_prog)
Y
Yancey1989 已提交
124

T
typhoonzero 已提交
125 126 127
        place = fluid.CPUPlace()
        exe = fluid.Executor(place)
        exe.run(startup_prog)
128
        print_to_err(type(self).__name__, "run pserver startup program done.")
T
typhoonzero 已提交
129
        exe.run(pserver_prog)
130
        print_to_err(type(self).__name__, "run pserver main program done.")
T
typhoonzero 已提交
131

132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
    def run_pipeline_trainer(self, args):
        self.lr = args.lr

        dist_strategy = DistributedStrategy()
        test_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader = \
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)

        device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        eprint(type(self).__name__, "device_id: %d." % device_id)
        place = fluid.CUDAPlace(device_id)

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        data_loader.set_sample_list_generator(train_reader, place)
        data_loader.start()
        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
151 152 153

        main_program = fluid.default_main_program()
        lr_sheduler = self.get_lr_scheduler(main_program)
154
        for i in six.moves.xrange(RUN_STEP):
155
            loss = exe.run(main_program, fetch_list=[avg_cost])
156 157 158
            loss = loss[0] if loss else None
            out_losses.append(loss)
            print_to_err(type(self).__name__, "run step %d finished" % i)
159 160 161
            if lr_sheduler is not None:
                lr_sheduler.step()

162
        data_loader.reset()
163 164
        print_to_err(type(self).__name__, "trainer run finished")

T
tianshuo78520a 已提交
165
        sys.stdout.buffer.write(pickle.dumps(out_losses))
166

167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
    def run_use_fleet_api_20_trainer(self, args):
        """
        1. remove codes for DistributedStrategy and leave the DistributedStrategy part to get_model()
        2. to run with fleet 2.0 api, set flags _use_fleet_api and _use_fleet_api_20 to True
        3. for now, not support test for model save
        """
        assert args.update_method == "nccl2" or "bkcl"

        self.lr = args.lr
        print_to_err("use_fleet 2.0", "fleet.node_num:")

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
            self.get_model(batch_size=args.batch_size)

        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var
            for var in fluid.default_main_program().global_block().vars.values()
            if var.is_data
        ]

        eprint("feed_var_list:", feed_var_list)

        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
212 213 214 215 216
            if paddle.distributed.get_world_size(
            ) == 1 and args.update_method == 'gloo':  # Gloo single mode
                return origin_batch

            elif args.update_method != "local" and args.use_reader_alloc:
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

        print_to_err(type(self).__name__, "begin to train on trainer")
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(fluid.default_main_program(),
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
        print_to_err(type(self).__name__, "dist losses: {}".format(out_losses))

T
tianshuo78520a 已提交
236
        sys.stdout.buffer.write(pickle.dumps(out_losses))
237

238 239
    def run_use_fleet_api_trainer(self, args):
        assert args.update_method == "nccl2" or "bkcl"
240 241 242 243 244 245 246 247

        self.lr = args.lr

        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1

        dist_strategy = DistributedStrategy()
        dist_strategy.exec_strategy = exec_strategy
T
tangwei12 已提交
248
        dist_strategy.fuse_memory_size = 1  # MB
249
        dist_strategy.fuse_laryer_size = 1
250 251 252 253
        if args.use_local_sgd:
            dist_strategy.use_local_sgd = True
        if args.ut4grad_allreduce:
            dist_strategy._ut4grad_allreduce = True
254 255
        if args.sync_batch_norm:
            dist_strategy.sync_batch_norm = True
256 257 258

        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        fleet.init(role)
259
        print_to_err("use_fleet", "fleet.node_num:")
T
tangwei12 已提交
260 261
        # "fleet.node_id:", fleet.node_id(),
        # "fleet.trainer_num:", fleet.worker_num())
262 263

        test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
T
tangwei12 已提交
264
            self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy)
265 266 267 268

        trainer_prog = fleet._origin_program
        dist_prog = fleet.main_program

269 270 271 272 273 274 275 276 277 278
        if fluid.core.is_compiled_with_cuda():
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
            raise ValueError(
                "fleet dygraph api must in paddlepaddle-xpu or paddlepaddle-gpu."
            )
279 280 281 282 283 284 285 286 287 288

        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
        eprint(type(self).__name__, "run worker startup program done.")

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

289 290 291 292 293 294 295
        eprint("feed_var_list:", feed_var_list)

        # tmp add this code to pass python35 gcc8 CI
        # Fixme(gongweibao, wangxi), need fix fleet api program order
        if feed_var_list[0].name == 'label':
            feed_var_list = feed_var_list[::-1]

296 297 298 299 300 301 302 303 304 305 306 307 308 309
        feeder = fluid.DataFeeder(feed_var_list, place)
        reader_generator = train_reader()

        def get_data():
            origin_batch = next(reader_generator)
            if args.update_method != "local" and args.use_reader_alloc:
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch

310
        print_to_err(type(self).__name__, "begin to train on trainer")
311 312 313 314 315 316
        out_losses = []
        for i in six.moves.xrange(RUN_STEP):
            loss, = exe.run(dist_prog,
                            fetch_list=[avg_cost.name],
                            feed=feeder.feed(get_data()))
            out_losses.append(loss[0])
317 318
            print_to_err(type(self).__name__, "run step %d finished" % i)
        print_to_err(type(self).__name__, "trainer run finished")
319

T
tianshuo78520a 已提交
320
        sys.stdout.buffer.write(pickle.dumps(out_losses))
321

322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
        if args.save_model:
            model_save_dir = "/tmp"
            if fleet.worker_index() == 0:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer")
            else:
                model_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_persistables_2")
                model_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_persistables_2")
                infer_save_dir_fluid = os.path.join(model_save_dir,
                                                    "fluid_infer_2")
                infer_save_dir_fleet = os.path.join(model_save_dir,
                                                    "fleet_infer_2")
            fluid.io.save_persistables(exe, model_save_dir_fluid,
                                       fleet._origin_program)
            fleet.save_persistables(executor=exe, dirname=model_save_dir_fleet)
            feeded_var_names = [var.name for var in feed_var_list]
            fluid.io.save_inference_model(infer_save_dir_fluid,
                                          feeded_var_names, [avg_cost], exe,
                                          fleet._origin_program)
            fleet.save_inference_model(exe, infer_save_dir_fleet,
                                       feeded_var_names, [avg_cost])

352
    def run_trainer(self, args):
W
Wu Yi 已提交
353
        self.lr = args.lr
W
Wu Yi 已提交
354 355 356
        if args.nccl2_reduce_layer_local_run:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, single_device=True)
357 358 359
        elif args.use_dgc:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc)
W
Wu Yi 已提交
360 361 362
        else:
            test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \
                self.get_model(batch_size=args.batch_size)
363

W
Wu Yi 已提交
364
        if args.update_method == "pserver":
365
            print_to_err(
366 367
                type(self).__name__,
                "begin to run transpile on trainer with pserver mode")
T
tangwei12 已提交
368 369 370 371 372 373 374 375 376
            t = self.get_transpiler(
                trainer_id=args.trainer_id,
                main_program=fluid.default_main_program(),
                pserver_endpoints=args.endpoints,
                trainers=args.trainers,
                sync_mode=args.sync_mode,
                dc_asgd=args.dc_asgd,
                hogwild_mode=args.hogwild)

T
typhoonzero 已提交
377
            trainer_prog = t.get_trainer_program()
378
            print_to_err(
379 380
                type(self).__name__,
                "get trainer program done with pserver mode.")
W
Wu Yi 已提交
381
        elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
W
Wu Yi 已提交
382 383 384
            # transpile for nccl2
            config = fluid.DistributeTranspilerConfig()
            config.mode = "nccl2"
385
            config.nccl_comm_num = args.nccl_comm_num
386 387 388
            if args.use_hallreduce:
                config.use_hierarchical_allreduce = True
                config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks
389
            print_to_err(
390 391
                type(self).__name__,
                "begin to run transpile on trainer with nccl2 mode")
W
Wu Yi 已提交
392 393 394 395 396 397 398
            nccl2_t = fluid.DistributeTranspiler(config=config)
            nccl2_t.transpile(
                args.trainer_id,
                program=fluid.default_main_program(),
                startup_program=fluid.default_startup_program(),
                trainers=args.endpoints,
                current_endpoint=args.current_endpoint)
399
            print_to_err(
400 401
                type(self).__name__,
                "get trainer program done. with nccl2 mode")
W
Wu Yi 已提交
402
            trainer_prog = fluid.default_main_program()
T
typhoonzero 已提交
403
        else:
404
            print_to_err(
405 406
                type(self).__name__,
                "do nothing about main program, just use it")
T
typhoonzero 已提交
407
            trainer_prog = fluid.default_main_program()
408
            print_to_err(type(self).__name__, "use main program done.")
T
typhoonzero 已提交
409

410 411 412
        # FIXME(gongwb):wait pserver initialization.
        time.sleep(1)

413
        if args.use_cuda:
414 415
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
416 417 418
        else:
            place = fluid.CPUPlace()

419 420
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())
421
        print_to_err(type(self).__name__, "run worker startup program done.")
T
typhoonzero 已提交
422

W
Wu Yi 已提交
423 424
        exec_strategy = fluid.ExecutionStrategy()
        exec_strategy.num_threads = 1
425

W
Wu Yi 已提交
426
        build_stra = fluid.BuildStrategy()
427 428 429
        # FIXME force disable enable_inplace and memory_optimize
        build_stra.enable_inplace = False
        build_stra.memory_optimize = False
W
Wu Yi 已提交
430

431 432 433 434
        if args.fuse_all_reduce is not None:
            sys.stderr.write('fuse_all_reduce={}'.format(args.fuse_all_reduce))
            build_stra.fuse_all_reduce_ops = args.fuse_all_reduce

T
tangwei12 已提交
435 436 437
        if args.hogwild:
            build_stra.async_mode = True

438 439 440
        if args.enable_backward_deps:
            build_stra.enable_backward_optimizer_op_deps = True

W
Wu Yi 已提交
441 442 443 444 445
        if args.use_reduce:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
        else:
            build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce

W
Wu Yi 已提交
446
        pass_builder = None
X
Xin Pan 已提交
447
        if args.batch_merge_repeat > 1:
X
fix  
Xin Pan 已提交
448
            pass_builder = build_stra._finalize_strategy_and_create_passes()
449
            mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass")
450
            mypass.set("num_repeats", args.batch_merge_repeat)
X
Xin Pan 已提交
451

W
Wu Yi 已提交
452
        if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer":
453 454
            build_stra.num_trainers = len(args.endpoints.split(","))
            build_stra.trainer_id = args.trainer_id
W
Wu Yi 已提交
455
        else:
W
Wu Yi 已提交
456
            # case args.update_method == "nccl2_reduce_layer":
457 458
            build_stra.num_trainers = 1
            build_stra.trainer_id = 0
W
Wu Yi 已提交
459

460
        print_to_err(type(self).__name__, "begin to compile with data parallel")
X
Xin Pan 已提交
461
        binary = compiler.CompiledProgram(trainer_prog).with_data_parallel(
W
Wu Yi 已提交
462
            loss_name=avg_cost.name,
W
Wu Yi 已提交
463
            build_strategy=build_stra,
W
Wu Yi 已提交
464
            exec_strategy=exec_strategy)
465
        print_to_err(type(self).__name__, "program compiled with data parallel")
T
typhoonzero 已提交
466 467 468 469 470 471 472

        feed_var_list = [
            var for var in trainer_prog.global_block().vars.values()
            if var.is_data
        ]

        feeder = fluid.DataFeeder(feed_var_list, place)
473
        reader_generator = train_reader()
T
typhoonzero 已提交
474

475 476
        def get_data():
            origin_batch = next(reader_generator)
W
Wu Yi 已提交
477
            if args.update_method != "local" and args.use_reader_alloc:
478 479 480 481 482 483 484
                new_batch = []
                for offset, item in enumerate(origin_batch):
                    if offset % 2 == args.trainer_id:
                        new_batch.append(item)
                return new_batch
            else:
                return origin_batch
T
typhoonzero 已提交
485

486
        lr_scheduler = self.get_lr_scheduler(trainer_prog)
487
        print_to_err(type(self).__name__, "begin to train on trainer")
W
Wu Yi 已提交
488
        out_losses = []
489
        for i in six.moves.xrange(RUN_STEP):
490 491
            loss, = exe.run(binary,
                            fetch_list=[avg_cost.name],
492
                            feed=feeder.feed(get_data()))
W
Wu Yi 已提交
493
            out_losses.append(loss[0])
494
            print_to_err(type(self).__name__, "run step %d finished" % i)
495 496 497
            if lr_scheduler is not None:
                lr_scheduler.step()

498
        print_to_err(type(self).__name__, "trainer run finished")
499

500
        print_to_out(out_losses)
T
typhoonzero 已提交
501 502


503 504 505 506 507 508 509 510 511
class TestParallelDyGraphRunnerBase(object):
    def get_model(self):
        raise NotImplementedError(
            "get_model should be implemented by child classes.")

    def run_one_loop(self, model, opt, data):
        raise NotImplementedError(
            "train_one_loop should be implemented by the child classes.")

512
    def _get_data(self, batch, args):
513 514 515 516
        if paddle.distributed.get_world_size(
        ) == 1 and args.update_method == 'gloo':  # Gloo single mode
            return batch
        elif args.update_method != "local":
517 518 519 520 521 522 523 524
            new_batch = []
            for offset, item in enumerate(batch):
                if offset % 2 == args.trainer_id:
                    new_batch.append(item)
            return new_batch
        else:
            return batch

525
    def run_trainer(self, args):
Y
Yan Xu 已提交
526

527
        seed = 90
528 529 530
        if args.update_method == 'gloo':
            place = fluid.CPUPlace()
        elif fluid.core.is_compiled_with_cuda():
531 532 533 534 535 536
            device_id = int(os.getenv("FLAGS_selected_gpus", "0"))
            place = fluid.CUDAPlace(device_id)
        elif fluid.core.is_compiled_with_xpu():
            device_id = int(os.getenv("FLAGS_selected_xpus", "0"))
            place = fluid.XPUPlace(device_id)
        else:
537
            assert ("Only support CUDAPlace or XPUPlace or CPU(Gloo) for now.")
538 539 540 541

        with fluid.dygraph.guard(place):
            fluid.default_startup_program().random_seed = seed
            fluid.default_main_program().random_seed = seed
Y
Yan Xu 已提交
542 543
            np.random.seed(seed)
            import random
544
            random.seed(seed)
545 546
            model, train_reader, opt = self.get_model()
            nranks = len(args.endpoints.split(",")) if args.endpoints else 1
Y
Yan Xu 已提交
547

548 549
            #if args.update_method == "nccl2":
            if args.update_method == "nccl2" or args.update_method == "bkcl":
550 551 552 553 554
                strategy = dygraph.parallel.ParallelStrategy()
                strategy.nranks = nranks
                strategy.local_rank = args.trainer_id
                strategy.trainer_endpoints = args.endpoints.split(",")
                strategy.current_endpoint = args.current_endpoint
555
                print_to_err(
556 557
                    type(self).__name__,
                    "begin to prepare context in dygraph with nccl2")
558
                dygraph.parallel.prepare_context(strategy)
559 560 561 562 563 564
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, strategy, find_unused_parameters=True)
565
                print_to_err(type(self).__name__, "model built in dygraph")
566 567 568 569 570 571 572 573 574 575

            elif args.update_method == "gloo":
                paddle.distributed.init_parallel_env()
                if not args.find_unused_parameters:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=False)
                else:
                    model = dygraph.parallel.DataParallel(
                        model, find_unused_parameters=True)

576
            out_losses = []
577
            print_to_err(type(self).__name__, "begin to run dygraph training")
578
            for step_id, data in enumerate(train_reader()):
579
                data = self._get_data(data, args)
580 581 582
                if step_id == RUN_STEP:
                    break
                loss = self.run_one_loop(model, opt, data)
G
guru4elephant 已提交
583
                if step_id % 10 == 0:
584
                    print_to_err(
585
                        type(self).__name__,
586
                        "loss at step %d: %f" % (step_id, loss.numpy()))
Y
Yan Xu 已提交
587
                out_losses.append(loss.numpy())
588 589 590 591

                loss.backward()

                opt.minimize(loss)
592 593
                if not args.accumulate_gradient:
                    model.clear_gradients()
594
        print_to_out(out_losses)
595

596 597 598 599 600 601 602 603 604
    def run_trainer_with_spawn(self, args):
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
605
        random.seed(seed)
606 607 608 609
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

        # 3. init parallel env
610
        if args.update_method in ["nccl2", "gloo"]:
611 612 613 614
            paddle.distributed.init_parallel_env()

        # 4. train model
        model, train_reader, opt = self.get_model()
615
        if args.update_method in ["nccl2", "gloo"]:
616 617 618 619
            if args.find_unused_parameters:
                model = paddle.DataParallel(model, find_unused_parameters=True)
            else:
                model = paddle.DataParallel(model, find_unused_parameters=False)
620 621 622 623 624 625 626 627 628 629 630 631 632 633 634

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.minimize(loss)
            model.clear_gradients()
        return out_losses

635
    def run_use_fleet_api_trainer(self, args):
636 637 638 639 640 641 642 643 644 645
        import paddle.distributed.fleet as fleet
        import paddle.distributed.fleet.base.role_maker as role_maker
        # 1. enable dygraph
        paddle.disable_static()

        # 2. init seed
        seed = 90
        paddle.static.default_startup_program().random_seed = seed
        paddle.static.default_main_program().random_seed = seed
        np.random.seed(seed)
646
        random.seed(seed)
647 648 649
        # get trainer id
        args.trainer_id = paddle.distributed.get_rank()

650 651
        # set strategy
        strategy = fleet.DistributedStrategy()
652 653
        if args.find_unused_parameters:
            strategy.find_unused_parameters = True
654

655
        # 3. init parallel env
656
        if args.update_method == "nccl2" or "bkcl":
657
            fleet.init(is_collective=True, strategy=strategy)
658 659 660

        # 4. train model
        model, train_reader, opt = self.get_model()
661
        if args.update_method == "nccl2" or "bkcl":
662 663 664 665 666 667 668 669 670 671 672 673 674 675
            opt = fleet.distributed_optimizer(opt)
            model = fleet.distributed_model(model)

        out_losses = []
        for step_id, data in enumerate(train_reader()):
            data = self._get_data(data, args)
            if step_id == RUN_STEP:
                break
            loss = self.run_one_loop(model, opt, data)
            out_losses.append(loss.numpy())

            loss.backward()

            opt.step()
676 677
            if not args.accumulate_gradient:
                opt.clear_grad()
678 679
        print_to_out(out_losses)

680

T
typhoonzero 已提交
681
def runtime_main(test_class):
W
Wu Yi 已提交
682 683 684 685
    parser = argparse.ArgumentParser(description='Run dist test.')
    parser.add_argument(
        '--role', type=str, required=True, choices=['pserver', 'trainer'])
    parser.add_argument('--endpoints', type=str, required=False, default="")
W
Wu Yi 已提交
686 687 688 689
    parser.add_argument(
        '--update_method',
        type=str,
        default="local",
690 691 692
        choices=[
            "pserver", "nccl2", "bkcl", "local", "nccl2_reduce_layer", "gloo"
        ])
W
Wu Yi 已提交
693 694
    parser.add_argument('--trainer_id', type=int, required=False, default=0)
    parser.add_argument('--trainers', type=int, required=False, default=1)
695
    parser.add_argument('--nccl_comm_num', type=int, required=False, default=1)
696 697
    parser.add_argument('--enable_backward_deps', action='store_true')
    parser.add_argument('--use_hallreduce', action='store_true')
698
    parser.add_argument('--use_pipeline', action='store_true')
699
    parser.add_argument('--use_fleet_api', action='store_true')
700
    parser.add_argument('--use_fleet_api_20', action='store_true')
701 702
    parser.add_argument('--use_local_sgd', action='store_true')
    parser.add_argument('--ut4grad_allreduce', action='store_true')
703
    parser.add_argument(
704
        '--hallreduce_inter_nranks', type=int, required=False, default=2)
W
Wu Yi 已提交
705 706 707
    parser.add_argument(
        '--current_endpoint', type=str, required=False, default="")
    parser.add_argument('--sync_mode', action='store_true')
708
    parser.add_argument('--use_cuda', action='store_true')
709
    parser.add_argument('--use_cpu', action='store_true')
710
    parser.add_argument('--use_xpu', action='store_true')
711
    parser.add_argument('--use_dgc', action='store_true')
712
    parser.add_argument('--accumulate_gradient', action='store_true')
713
    parser.add_argument('--find_unused_parameters', action='store_true')
W
Wu Yi 已提交
714
    parser.add_argument('--use_reduce', action='store_true')
W
Wu Yi 已提交
715
    parser.add_argument('--dc_asgd', action='store_true')
T
tangwei12 已提交
716
    parser.add_argument('--hogwild', action='store_true')
717
    parser.add_argument('--save_model', action='store_true')
718
    parser.add_argument(
W
Wu Yi 已提交
719
        '--use_reader_alloc', action='store_true', required=False)
720
    parser.add_argument('--batch_size', required=False, type=int, default=2)
W
Wu Yi 已提交
721
    parser.add_argument('--lr', required=False, type=float, default=0.001)
722 723
    parser.add_argument(
        '--batch_merge_repeat', required=False, type=int, default=1)
W
Wu Yi 已提交
724 725 726 727 728
    parser.add_argument(
        '--nccl2_reduce_layer_local_run',
        required=False,
        type=bool,
        default=False)
729
    parser.add_argument('--sync_batch_norm', action='store_true')
730 731 732 733 734
    parser.add_argument(
        '--fuse_all_reduce',
        required=False,
        type=ast.literal_eval,
        default=None)
W
Wu Yi 已提交
735 736

    args = parser.parse_args()
T
typhoonzero 已提交
737

738 739 740
    if args.update_method == 'gloo':
        paddle.set_device("cpu")

T
typhoonzero 已提交
741
    model = test_class()
W
Wu Yi 已提交
742
    if args.role == "pserver" and args.update_method == "pserver":
W
Wu Yi 已提交
743
        model.run_pserver(args)
744 745
    elif args.use_fleet_api:
        model.run_use_fleet_api_trainer(args)
746 747
    elif args.use_fleet_api_20:
        model.run_use_fleet_api_20_trainer(args)
748 749
    elif args.use_pipeline:
        model.run_pipeline_trainer(args)
T
typhoonzero 已提交
750
    else:
751
        model.run_trainer(args)
X
Xin Pan 已提交
752

M
minqiyang 已提交
753

M
minqiyang 已提交
754
import paddle.compat as cpt
Y
Yancey1989 已提交
755 756
import socket
from contextlib import closing
M
minqiyang 已提交
757

X
Xin Pan 已提交
758 759

class TestDistBase(unittest.TestCase):
W
Wu Yi 已提交
760 761 762
    def _setup_config(self):
        raise NotImplementedError("tests should have _setup_config implemented")

763 764 765
    def _after_setup_config(self):
        if self._enforce_place == "CPU":
            self.__use_cuda = False
766
            self.__use_xpu = False
767
            self._use_dgc = False
768 769
        elif self._enforce_place == "GPU":
            self.__use_cuda = True
770 771 772 773 774
            self.__use_xpu = False
        elif self._enforce_place == "XPU":
            self.__use_cuda = False
            self.__use_xpu = True
            self._use_dgc = False
775 776 777 778 779
        else:
            if fluid.core.is_compiled_with_cuda():
                self.__use_cuda = True
            else:
                self.__use_cuda = False
780 781 782 783
                self._use_dgc = False

        if self._use_reduce:
            assert not self._use_dgc
784

X
Xin Pan 已提交
785 786 787
    def setUp(self):
        self._trainers = 2
        self._pservers = 2
Y
Yancey1989 已提交
788
        self._port_set = set()
M
minqiyang 已提交
789
        self._python_interp = sys.executable
W
Wu Yi 已提交
790
        self._sync_mode = True
T
tangwei12 已提交
791
        self._hogwild_mode = False
792
        self._enforce_place = None
W
Wu Yi 已提交
793
        self._use_reduce = False
W
Wu Yi 已提交
794
        self._dc_asgd = False  # must use with async mode
795
        self._use_reader_alloc = True
W
Wu Yi 已提交
796
        self._nccl2_mode = False
797
        self._bkcl_mode = False
798
        self._gloo_mode = False  # now, support gloo backend
799
        self._pipeline_mode = False
800
        self._mp_mode = False
W
Wu Yi 已提交
801 802 803 804 805
        # FIXME(typhoonzero): I added this stupid argument to enable
        # testing allreduce layers, which users can call layers.allreduce
        # to accumulate tensors at anywhere. Find a better way to do this
        # test, reduce check this argument everywhere.
        self._nccl2_reduce_layer = False
W
Wu Yi 已提交
806
        self._lr = 0.001
807
        self._use_dgc = False
808
        self._dygraph = False
809
        self._nccl_comm_num = 1
810
        self._enable_backward_deps = False
811
        self._use_fleet_api = False
812
        self._use_fleet_api_20 = False
813 814
        self._use_local_sgd = False
        self._ut4grad_allreduce = False
815
        self._use_hallreduce = False
816
        self._save_model = False
817
        self._fuse_all_reduce = None
818
        self._accumulate_gradient = False
819
        self._find_unused_parameters = False
W
Wu Yi 已提交
820
        self._setup_config()
821 822 823 824 825 826 827 828 829 830 831 832 833 834

        global DIST_UT_PORT
        if DIST_UT_PORT == 0 and os.getenv("PADDLE_DIST_UT_PORT"):
            DIST_UT_PORT = int(os.getenv("PADDLE_DIST_UT_PORT"))

        if DIST_UT_PORT == 0:
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                self._find_free_port(), self._find_free_port())
        else:
            print("set begin_port:", DIST_UT_PORT)
            self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % (
                DIST_UT_PORT, DIST_UT_PORT + 1)
            DIST_UT_PORT += 2

835
        self._after_setup_config()
X
Xin Pan 已提交
836

Y
Yancey1989 已提交
837
    def _find_free_port(self):
Y
Yancey1989 已提交
838 839 840 841
        def __free_port():
            with closing(socket.socket(socket.AF_INET,
                                       socket.SOCK_STREAM)) as s:
                s.bind(('', 0))
842
                print_to_err(
843
                    type(self).__name__, "socket name: %s" % s.getsockname()[1])
Y
Yancey1989 已提交
844 845 846 847 848 849 850
                return s.getsockname()[1]

        while True:
            port = __free_port()
            if port not in self._port_set:
                self._port_set.add(port)
                return port
Y
Yancey1989 已提交
851

852 853 854 855 856
    def start_pserver(self,
                      model_file,
                      check_error_log,
                      required_envs,
                      log_name=""):
X
Xin Pan 已提交
857
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
858 859 860 861 862 863 864 865
        ps_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            ps_cmd += " -m coverage run --branch -p"

        ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver"

W
Wu Yi 已提交
866
        ps0_cmd = ps_cmd % \
867 868
                  (self._python_interp, model_file, self._ps_endpoints, ps0_ep,
                   self._trainers)
W
Wu Yi 已提交
869
        ps1_cmd = ps_cmd % \
870 871
                  (self._python_interp, model_file, self._ps_endpoints, ps1_ep,
                   self._trainers)
W
Wu Yi 已提交
872 873 874 875

        if self._sync_mode:
            ps0_cmd += " --sync_mode"
            ps1_cmd += " --sync_mode"
X
Xin Pan 已提交
876

877 878
        print(ps0_cmd)
        print(ps1_cmd)
879 880
        ps0_pipe = open(log_name + "_ps0_err.log", "wb")
        ps1_pipe = open(log_name + "_ps1_err.log", "wb")
G
gongweibao 已提交
881

882
        print_to_err(type(self).__name__, "going to start pserver process 0")
X
Xin Pan 已提交
883
        ps0_proc = subprocess.Popen(
884 885 886 887
            ps0_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps0_pipe,
            env=required_envs)
888
        print_to_err(type(self).__name__, "going to start pserver process 1")
X
Xin Pan 已提交
889
        ps1_proc = subprocess.Popen(
890 891 892 893
            ps1_cmd.strip().split(" "),
            stdout=subprocess.PIPE,
            stderr=ps1_pipe,
            env=required_envs)
G
gongweibao 已提交
894

895
        return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe
X
Xin Pan 已提交
896

897 898 899 900 901
    def _run_local(self,
                   model,
                   envs,
                   check_error_log=False,
                   batch_size=DEFAULT_BATCH_SIZE,
902
                   batch_merge_repeat=1,
903
                   log_name="",
904
                   devices="1"):
G
gongweibao 已提交
905

906 907 908 909 910 911
        cmd = self._python_interp

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            cmd += " -m coverage run --branch -p"

912 913
        cmd += " %s --role trainer --update_method local --lr %f" % (model,
                                                                     self._lr)
914

915 916 917 918
        if batch_size != DEFAULT_BATCH_SIZE:
            cmd += " --batch_size %d" % batch_size
        if batch_merge_repeat > 1:
            cmd += " --batch_merge_repeat %d" % batch_merge_repeat
W
Wu Yi 已提交
919 920
        if self._nccl2_reduce_layer:
            cmd += " --nccl2_reduce_layer_local_run 1"
921

922
        if self.__use_cuda:
923
            cmd += " --use_cuda"
W
Wu Yi 已提交
924
            env_local = {
925 926 927 928 929 930 931 932
                "CUDA_VISIBLE_DEVICES": devices,
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
        elif self.__use_xpu:
            cmd += " --use_xpu"
            env_local = {
                "FLAGS_selected_xpus": devices,
W
Wu Yi 已提交
933 934 935
                "PADDLE_TRAINERS_NUM": "1",
                "PADDLE_TRAINER_ID": "0"
            }
936 937 938
        else:
            env_local = {'CPU_NUM': '1'}

939
        # not use dgc in single card
940
        if len(devices) > 1 and self._use_dgc:
941 942
            cmd += " --use_dgc"

943 944 945
        if self._accumulate_gradient:
            cmd += " --accumulate_gradient"

946 947 948
        if self._find_unused_parameters:
            cmd += " --find_unused_parameters"

W
Wu Yi 已提交
949 950
        env_local.update(envs)
        print("local_cmd: {}, env: {}".format(cmd, env_local))
G
gongweibao 已提交
951

952
        if check_error_log:
953
            err_log = open(log_name + "_local.log", "wb")
G
gongweibao 已提交
954
            local_proc = subprocess.Popen(
955
                cmd.split(" "),
G
gongweibao 已提交
956
                stdout=subprocess.PIPE,
957
                stderr=err_log,
W
Wu Yi 已提交
958
                env=env_local)
G
gongweibao 已提交
959 960
        else:
            local_proc = subprocess.Popen(
961
                cmd.split(" "),
G
gongweibao 已提交
962
                stdout=subprocess.PIPE,
963
                stderr=subprocess.PIPE,
W
Wu Yi 已提交
964
                env=env_local)
G
gongweibao 已提交
965

966 967 968 969 970 971
        local_out, local_err = local_proc.communicate()

        if check_error_log:
            err_log.close()

        sys.stderr.write('local_stderr: %s\n' % local_err)
W
Wu Yi 已提交
972
        sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out))
X
Xin Pan 已提交
973

W
Wu Yi 已提交
974
        return pickle.loads(local_out)
975

976 977 978 979 980 981 982 983 984 985 986 987 988 989 990
    def _run_local_gloo(self,
                        model,
                        envs,
                        check_error_log=False,
                        batch_size=DEFAULT_BATCH_SIZE,
                        batch_merge_repeat=1,
                        log_name="",
                        devices="0"):
        saved_endpoints = self._ps_endpoints
        self._ps_endpoints = self._ps_endpoints.split(',')[0]
        result = self._run_cluster_gloo(model, envs, 'gloo', check_error_log,
                                        log_name)
        self._ps_endpoints = saved_endpoints
        return result

991
    def _run_cluster(self, model, envs, check_error_log, log_name):
X
Xin Pan 已提交
992
        # Run dist train to compare with local results
993 994
        ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(
            model, check_error_log, envs, log_name=log_name)
W
Wu Yi 已提交
995

X
Xin Pan 已提交
996
        ps0_ep, ps1_ep = self._ps_endpoints.split(",")
997

998 999 1000 1001 1002 1003 1004 1005
        tr_cmd = "%s"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f"

W
Wu Yi 已提交
1006
        tr0_cmd = tr_cmd % \
1007
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1008
                   0, ps0_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1009
        tr1_cmd = tr_cmd % \
1010
                  (self._python_interp, model, self._ps_endpoints,
W
Wu Yi 已提交
1011
                   1, ps1_ep, self._trainers, self._lr)
W
Wu Yi 已提交
1012 1013 1014 1015

        if self._sync_mode:
            tr0_cmd += " --sync_mode"
            tr1_cmd += " --sync_mode"
T
tangwei12 已提交
1016 1017 1018
        if self._hogwild_mode:
            tr0_cmd += " --hogwild"
            tr1_cmd += " --hogwild"
W
Wu Yi 已提交
1019 1020 1021
        if self._use_reduce:
            tr0_cmd += " --use_reduce"
            tr1_cmd += " --use_reduce"
1022 1023 1024
        if self._use_reader_alloc:
            tr0_cmd += " --use_reader_alloc"
            tr1_cmd += " --use_reader_alloc"
1025
        if self.__use_cuda:
1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
            tr0_cmd += " --use_cuda"
            tr1_cmd += " --use_cuda"
            env0 = {"CUDA_VISIBLE_DEVICES": "0"}
            env1 = {"CUDA_VISIBLE_DEVICES": "1"}
        else:
            env0 = {'CPU_NUM': '1'}
            env1 = {'CPU_NUM': '1'}

        env0.update(envs)
        env1.update(envs)
X
Xin Pan 已提交
1036

W
Wu Yi 已提交
1037 1038
        print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0))
        print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1))
1039 1040
        tr0_pipe = open(log_name + "_tr0_err.log", "wb")
        tr1_pipe = open(log_name + "_tr1_err.log", "wb")
G
gongweibao 已提交
1041

1042
        print_to_err(type(self).__name__, "going to start trainer process 0")
X
Xin Pan 已提交
1043
        tr0_proc = subprocess.Popen(
W
Wu Yi 已提交
1044
            tr0_cmd.strip().split(" "),
X
Xin Pan 已提交
1045
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1046
            stderr=tr0_pipe,
X
Xin Pan 已提交
1047
            env=env0)
1048
        print_to_err(type(self).__name__, "going to start trainer process 1")
X
Xin Pan 已提交
1049
        tr1_proc = subprocess.Popen(
W
Wu Yi 已提交
1050
            tr1_cmd.strip().split(" "),
X
Xin Pan 已提交
1051
            stdout=subprocess.PIPE,
G
gongweibao 已提交
1052
            stderr=tr1_pipe,
X
Xin Pan 已提交
1053 1054
            env=env1)

1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066
        # Wait until trainer process terminate
        while True:
            stat0 = tr0_proc.poll()
            time.sleep(0.1)
            if stat0 is not None:
                break
        while True:
            stat1 = tr1_proc.poll()
            time.sleep(0.1)
            if stat1 is not None:
                break

1067 1068
        tr0_out, tr0_err = tr0_proc.communicate()
        tr1_out, tr1_err = tr1_proc.communicate()
X
Xin Pan 已提交
1069

G
gongweibao 已提交
1070
        # close trainer file
1071 1072 1073 1074
        tr0_pipe.close()
        tr1_pipe.close()
        ps0_pipe.close()
        ps1_pipe.close()
W
Wu Yi 已提交
1075

W
Wu Yi 已提交
1076 1077
        ps0.terminate()
        ps1.terminate()
T
typhoonzero 已提交
1078

W
Wu Yi 已提交
1079 1080
        return pickle.loads(tr0_out), pickle.loads(tr1_out)

1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
    def _get_gloo_trainer_cmd(self, model, ep, update_method, trainer_id,
                              trainer_num):
        env = {}
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

        tr_cmd = tr_cmd % \
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)

        if self._use_reduce:
            tr_cmd += " --use_reduce"
        if self._use_reader_alloc:
            tr_cmd += " --use_reader_alloc"
        #assert self._use_reduce == False, "gloo not support _use_reduce"
        #assert self._use_reader_alloc == False, "gloo not support _use_reduce"
        if self._save_model:
            tr_cmd += " --save_model"
        self.__use_cuda = False
        self.__use_xpu = False
        assert self.__use_cuda == False, "gloo not support use cuda"
        assert self.__use_xpu == False, "gloo not support use xpu"
        tr_cmd += " --use_cpu"
        env.update({
            "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
            "PADDLE_TRAINER_ID": "{}".format(trainer_id),
            "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_CURRENT_ENDPOINT": ep,
            "PADDLE_DISTRI_BACKEND": "gloo",
            "GLOG_v": "2",
        })

        assert self._use_dgc == False, "gloo not support use dgc"
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

        assert self._pipeline_mode == False, "gloo not support use pipeline"

        if self._enable_backward_deps:  # build strategy, save it
            tr_cmd += " --enable_backward_deps"

        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

        assert self._use_fleet_api == False, "gloo not support use fleet api"
        assert self._use_fleet_api_20 == False, "gloo not support use fleet api"
        return tr_cmd, env

1137 1138 1139
    def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id,
                               trainer_num):
        env = {}
1140 1141 1142 1143 1144 1145 1146
        tr_cmd = "%s -u"

        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            tr_cmd += " -m coverage run --branch -p"

        tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f"

1147
        tr_cmd = tr_cmd % \
T
tangwei12 已提交
1148 1149
                 (self._python_interp, model, self._ps_endpoints,
                  trainer_id, ep, update_method, self._lr)
W
Wu Yi 已提交
1150 1151

        if self._use_reduce:
1152
            tr_cmd += " --use_reduce"
W
Wu Yi 已提交
1153
        if self._use_reader_alloc:
1154
            tr_cmd += " --use_reader_alloc"
1155 1156
        if self._save_model:
            tr_cmd += " --save_model"
W
Wu Yi 已提交
1157
        if self.__use_cuda:
1158 1159
            tr_cmd += " --use_cuda"
            env.update({
1160
                "FLAGS_selected_gpus": "{}".format(0),
W
WangXi 已提交
1161
                "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id),
1162
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
1163 1164 1165
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
1166
            })
1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179
        # TODO(liuyuhui):XPU_VISIBLE_DEVICES is not working right now,
        # will update it after Badiu Kunlun partners' support.
        elif self.__use_xpu:
            tr_cmd += " --use_xpu"
            env.update({
                "FLAGS_selected_xpus": "{}".format(trainer_id),
                #"XPU_VISIBLE_DEVICES": "{}".format(trainer_id + 1),
                "PADDLE_TRAINERS_NUM": "{}".format(trainer_num),
                "PADDLE_TRAINER_ID": "{}".format(trainer_id),
                "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints,
                "PADDLE_CURRENT_ENDPOINT": ep,
                "GLOG_v": "2",
            })
W
Wu Yi 已提交
1180
        else:
1181
            env.update({'CPU_NUM': '1'})
W
Wu Yi 已提交
1182

1183
        if self._use_dgc:
1184 1185
            tr_cmd += " --use_dgc"

1186 1187 1188
        if self._accumulate_gradient:
            tr_cmd += " --accumulate_gradient"

1189 1190 1191
        if self._find_unused_parameters:
            tr_cmd += " --find_unused_parameters"

1192 1193
        if self._pipeline_mode:
            tr_cmd += " --use_pipeline"
1194
        if self._mp_mode:
W
WangXi 已提交
1195
            env = {"FLAGS_selected_gpus": "{}".format(trainer_id)}
1196 1197

        if self._nccl_comm_num > 1:
1198
            tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num)
1199

1200 1201
        if self._use_hallreduce:
            tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2"
1202

1203
        if self._enable_backward_deps:
1204
            tr_cmd += " --enable_backward_deps"
1205

1206 1207 1208
        if self._fuse_all_reduce is not None:
            tr_cmd += " --fuse_all_reduce {}".format(self._fuse_all_reduce)

1209
        if self._use_fleet_api:
1210
            tr_cmd += " --use_fleet_api_20" if self._use_fleet_api_20 else " --use_fleet_api"
1211 1212 1213 1214
            if self._use_local_sgd:
                tr_cmd += " --use_local_sgd"
            if self._ut4grad_allreduce:
                tr_cmd += " --ut4grad_allreduce"
1215 1216
            if hasattr(self, '_sync_batch_norm') and self._sync_batch_norm:
                tr_cmd += " --sync_batch_norm"
1217

1218 1219 1220
        if os.getenv('WITH_COVERAGE', 'OFF') == 'ON':
            env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '')

1221
        return tr_cmd, env
W
Wu Yi 已提交
1222

1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
    def _run_cluster_gloo(self, model, envs, update_method, check_error_log,
                          log_name):
        assert update_method == "gloo", "_run_cluster_gloo must have update_method: gloo, but get %s" % update_method
        assert not self._use_hallreduce, "_run_cluster_gloo must have _use_hallreduce = false"

        worker_endpoints = self._ps_endpoints.split(",")

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_gloo_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env["GLOG_vmodule"] = 'gloo_context=4'
            tr_env["GLOG_v"] = '3'
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))

            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if trainer_num == 1:
            if check_error_log: print("outs[0]:", outs[0])
            return pickle.loads(outs[0])

        else:
            if check_error_log:
                print("outs[0]:", outs[0])
                print("outs[1]:", outs[1])
            return pickle.loads(outs[0]), pickle.loads(outs[1])

1274 1275
    def _run_cluster_nccl2(self, model, envs, update_method, check_error_log,
                           log_name):
1276 1277
        if self._use_hallreduce:
            self._ps_endpoints = ""
1278 1279 1280

            global DIST_UT_PORT
            if DIST_UT_PORT == 0:
W
WangXi 已提交
1281
                # NOTE(wangxi). hallreduce test must use 4cards after nccl>=2.7
1282 1283 1284 1285 1286 1287 1288
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (
                        self._find_free_port())
            else:
                for i in range(0, 4):
                    self._ps_endpoints += "127.0.0.1:%s," % (DIST_UT_PORT + i)
                DIST_UT_PORT += 4
1289
            self._ps_endpoints = self._ps_endpoints[:-1]
W
Wu Yi 已提交
1290

1291 1292
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
W
Wu Yi 已提交
1293

1294
        trainer_num = len(worker_endpoints)
W
Wu Yi 已提交
1295

1296 1297 1298 1299 1300 1301 1302 1303
        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            print("use_hallreduce:{} tr_cmd:{}, env: {}".format(
                self._use_hallreduce, tr_cmd, tr_env))
W
Wu Yi 已提交
1304

1305
            tr_pipe = open(log_name + "_tr{}_err.log".format(i), "wb")
W
Wu Yi 已提交
1306

1307
            print_to_err(
1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

1326 1327 1328
        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
1329

1330
        return pickle.loads(outs[0]), pickle.loads(outs[1])
1331

1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376
    def _run_pipeline(self, model, envs, check_error_log, log_name):
        # NOTE: we reuse ps_endpoints as nccl2 worker endpoints
        worker_endpoints = self._ps_endpoints.split(",")
        update_method = "nccl2"

        trainer_num = len(worker_endpoints)

        procs = []
        pipes = []
        for i in range(0, trainer_num):
            tr_cmd, tr_env = self._get_nccl2_trainer_cmd(
                model, worker_endpoints[i], update_method, i, trainer_num)
            tr_env.update(envs)
            tr_env['CUDA_VISIBLE_DEVICES'] = "0,1"
            tr_env['NCCL_SHM_DISABLE'] = '1'
            tr_env['FLAGS_selected_gpus'] = str(i)
            tr_env['FLAGS_cudnn_deterministic'] = '0'
            print("tr_cmd:{}, env: {}".format(tr_cmd, tr_env))

            tr_pipe = open("/tmp/" + "tr{}_err.log".format(i), "wb")

            print_to_err(
                type(self).__name__,
                "going to start process {} with nccl2".format(i))
            tr_proc = subprocess.Popen(
                tr_cmd.strip().split(" "),
                stdout=subprocess.PIPE,
                stderr=tr_pipe,
                env=tr_env)

            procs.append(tr_proc)
            pipes.append(tr_pipe)

        outs = []
        for i in range(0, trainer_num):
            tr_out, tr_err = procs[i].communicate()
            outs.append(tr_out)
            pipes[i].close()
            sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err))

        if check_error_log:
            print("outs[0]:", outs[0])
            print("outs[1]:", outs[1])
        return pickle.loads(outs[0]), pickle.loads(outs[1])

1377
    def _get_required_envs(self, check_error_log=False, need_envs={}):
1378 1379 1380 1381 1382 1383
        # TODO(typhoonzero): should auto adapt GPU count on the machine.
        required_envs = {
            "PATH": os.getenv("PATH", ""),
            "PYTHONPATH": os.getenv("PYTHONPATH", ""),
            "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""),
            "FLAGS_fraction_of_gpu_memory_to_use": "0.15",
G
guru4elephant 已提交
1384
            "FLAGS_rpc_deadline": "30000",  # 5sec to fail fast
1385
            "FLAGS_rpc_retry_bind_port": "50",
1386
            "FLAGS_cudnn_deterministic": "1",
1387
            "FLAGS_rpc_disable_reuse_port": "1",
W
Wu Yi 已提交
1388
            "http_proxy": "",
1389 1390
            "NCCL_P2P_DISABLE": "1",
            "NCCL_SHM_DISABLE": "1"
1391 1392 1393
        }

        if check_error_log:
1394
            required_envs["GLOG_vmodule"] = \
1395 1396
                "fused_all_reduce_op_handle=10,all_reduce_op_handle=10,alloc_continuous_space_op=10,fuse_all_reduce_op_pass=10," \
                "alloc_continuous_space_for_grad_pass=10,fast_threaded_ssa_graph_executor=10,executor=10,operator=10," \
W
WangXi 已提交
1397
                "sparse_all_reduce_op_handle=10,gen_nccl_id_op=10,gen_nccl_id_op_help=10,nccl_helper=10,grpc_client=10," \
1398
                "grpc_server=10,request_handler_impl=10,section_worker=10"
1399 1400
            required_envs["GLOG_logtostderr"] = "1"

1401 1402 1403 1404 1405 1406 1407 1408 1409
        required_envs.update(need_envs)
        return required_envs

    def check_with_place(self,
                         model_file,
                         delta=1e-3,
                         check_error_log=False,
                         need_envs={},
                         log_name=""):
1410

1411 1412
        required_envs = self._get_required_envs(check_error_log, need_envs)

1413 1414 1415 1416 1417 1418
        if self._gloo_mode:
            local_losses \
                = self._run_local_gloo(model_file, required_envs,
                                  check_error_log, log_name=log_name)
        else:
            local_losses \
1419
            = self._run_local(model_file, required_envs,
1420 1421
                              check_error_log, log_name=log_name)

W
Wu Yi 已提交
1422
        if self._nccl2_mode:
W
Wu Yi 已提交
1423 1424
            if self._nccl2_reduce_layer:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1425 1426
                    model_file,
                    required_envs,
1427 1428
                    update_method="nccl2_reduce_layer",
                    check_error_log=check_error_log,
1429
                    log_name=log_name)
W
Wu Yi 已提交
1430 1431
            else:
                tr0_losses, tr1_losses = self._run_cluster_nccl2(
1432 1433
                    model_file,
                    required_envs,
1434 1435
                    update_method='nccl2',
                    check_error_log=check_error_log,
1436
                    log_name=log_name)
1437 1438 1439 1440 1441 1442 1443
        elif self._bkcl_mode:
            tr0_losses, tr1_losses = self._run_cluster_nccl2(
                model_file,
                required_envs,
                update_method='bkcl',
                check_error_log=check_error_log,
                log_name=log_name)
1444 1445 1446 1447 1448 1449 1450 1451
        elif self._gloo_mode:
            # gloo mode, cpu only parallel train @xiongkun03
            tr0_losses, tr1_losses = self._run_cluster_gloo(
                model_file,
                required_envs,
                update_method='gloo',
                check_error_log=check_error_log,
                log_name=log_name)
1452

1453 1454 1455
        elif self._pipeline_mode:
            tr0_losses, tr1_losses = self._run_pipeline(
                model_file, required_envs, check_error_log, log_name=log_name)
W
Wu Yi 已提交
1456 1457
        else:
            tr0_losses, tr1_losses = self._run_cluster(
1458
                model_file, required_envs, check_error_log, log_name=log_name)
1459 1460

        for step_id in range(RUN_STEP):
W
Wu Yi 已提交
1461 1462 1463
            local_loss = local_losses[step_id]
            tr0_loss = tr0_losses[step_id]
            tr1_loss = tr1_losses[step_id]
1464 1465 1466 1467
            if self._pipeline_mode:
                dist_loss = np.array([tr1_loss])
            else:
                dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2
W
Wu Yi 已提交
1468 1469
            print("=======", local_loss, ":", dist_loss[0], "=======")
            self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)
1470 1471 1472 1473 1474 1475 1476

    def check_with_place_multi_cards(self,
                                     model_file,
                                     delta=1e-3,
                                     check_error_log=False,
                                     need_envs={},
                                     log_name=""):
1477

1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488
        # need open p2p or shm otherwise multi cards mode will hang
        need_envs.update({"NCCL_P2P_DISABLE": "0", "NCCL_SHM_DISABLE": "0"})

        required_envs = self._get_required_envs(check_error_log, need_envs)

        if self._use_dgc:
            multi_cards_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_dgc_2cards",
1489
                devices="0,1")
1490 1491 1492 1493 1494 1495 1496

            self._use_dgc = False
            base_losses = self._run_local(
                model_file,
                required_envs,
                check_error_log,
                log_name=log_name + "_base_2cards",
1497
                devices="0,1")
1498 1499 1500 1501 1502 1503 1504 1505

            self._use_dgc = True

            for step_id in range(RUN_STEP):
                base_loss = base_losses[step_id]
                multi_cards_loss = multi_cards_losses[step_id]
                print("=======", base_loss, ":", multi_cards_loss, "=======")
                self.assertAlmostEqual(base_loss, multi_cards_loss, delta=delta)