op_function_generator.cc 26.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
16 17 18
#include <fstream>
#include <iostream>
#include <string>
19 20 21
#ifndef _WIN32
#include <unistd.h>
#endif
22 23 24 25 26 27 28

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"
29
#ifdef PADDLE_WITH_ASCEND_CL
30 31
#include "paddle/fluid/framework/fleet/ascend_wrapper.h"
#endif
32

L
Leo Chen 已提交
33 34 35 36 37 38 39 40
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
41 42
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
S
smallv0221 已提交
43
    {"bincount", {"X", "Weights"}},
L
Li Min 已提交
44 45 46
    {"fused_attention",
     {"X", "LnScale", "LnBias", "QKVW", "QKVBias", "SrcMask", "OutLinearW",
      "OutLinearBias", "Ln2Scale", "Ln2Bias"}},
C
ceci3 已提交
47
    {"instance_norm", {"X", "Scale", "Bias"}},
48 49 50
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
51 52 53
    {"reshape2", {"X", "Shape"}},
    {"expand", {"X", "ExpandTimes"}},
    {"slice", {"Input", "StartsTensor", "EndsTensor"}},
L
Leo Chen 已提交
54 55
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"X", "InScale", "InAccum", "InState"}},
56
    {"nll_loss", {"X", "Label", "Weight"}},
57
    {"bilinear_tensor_product", {"X", "Y", "Weight", "Bias"}},
58
    {"gather", {"X", "Index", "Axis"}},
59 60
    {"roi_pool", {"X", "ROIs", "RoisNum"}},
    {"roi_align", {"X", "ROIs", "RoisNum"}},
61
    {"psroi_pool", {"X", "ROIs", "RoisNum"}},
62 63 64
    {"collect_fpn_proposals",
     {"MultiLevelRois", "MultiLevelScores", "MultiLevelRoIsNum"}},
    {"distribute_fpn_proposals", {"FpnRois", "RoisNum"}},
65
    {"warpctc", {"Logits", "Label", "LogitsLength", "LabelLength"}},
66 67
    {"hierarchical_sigmoid",
     {"X", "W", "Label", "PathTable", "PathCode", "Bias"}},
68
    {"moving_average_abs_max_scale", {"X", "InAccum", "InState"}},
69
    {"multiclass_nms3", {"BBoxes", "Scores", "RoisNum"}},
70
    {"box_coder", {"PriorBox", "PriorBoxVar", "TargetBox"}},
71
    {"momentum", {"Param", "Grad", "Velocity", "LearningRate", "MasterParam"}},
72
    {"sparse_momentum", {"Param", "Grad", "Velocity", "Index", "LearningRate"}},
73
    {"rnn", {"Input", "PreState", "WeightList", "SequenceLength"}},
74
    {"run_program", {"X", "Params"}},
75 76 77
    {"fused_feedforward",
     {"Dropout1Seed", "Dropout2Seed", "Linear1Bias", "Linear2Bias", "Ln1Scale",
      "Ln1Bias", "Ln2Scale", "Ln2Bias"}},
S
Steffy-zxf 已提交
78
    {"faster_tokenizer", {"Text", "Vocab", "TextPair"}},
79 80 81 82
    {"matrix_rank", {"X", "TolTensor"}},
    {"adam",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
83 84 85
    {"adamw",
     {"Param", "Grad", "LearningRate", "Moment1", "Moment2", "Beta1Pow",
      "Beta2Pow", "MasterParam"}},
86
};
L
Leo Chen 已提交
87 88 89 90 91 92 93 94 95 96 97 98

// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
99 100 101
    {"batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
L
Li Min 已提交
102 103 104 105 106
    {"fused_attention",
     {"LnMean", "LnVariance", "LnOut", "QKVOut", "QKVBiasOut", "TransposeOut2",
      "QKOut", "QKTVOut", "SoftmaxOut", "AttnDropoutMaskOut", "AttnDropoutOut",
      "SrcMaskOut", "FMHAOut", "OutLinearOut", "DropoutMaskOut", "Ln2Mean",
      "Ln2Variance", "BiasDropoutResidualOut", "Y"}},
C
ceci3 已提交
107 108 109
    {"sync_batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
Z
Zhang Ting 已提交
110
    {"unique", {"Out", "Index", "Indices", "Counts"}},
D
duanboqiang 已提交
111
    {"unique_consecutive", {"Out", "Index", "Counts"}},
112 113
    {"generate_proposals", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
    {"collect_fpn_proposals", {"FpnRois", "RoisNum"}},
114
    {"matrix_nms", {"Out", "Index", "RoisNum"}},
115 116
    {"distribute_fpn_proposals",
     {"MultiFpnRois", "RestoreIndex", "MultiLevelRoIsNum"}},
117 118
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
119
    {"multiclass_nms3", {"Out", "NmsRoisNum"}},
120
    {"generate_proposals_v2", {"RpnRois", "RpnRoiProbs", "RpnRoisNum"}},
121
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
122
    {"sparse_momentum", {"ParamOut", "VelocityOut"}},
123
    {"rnn", {"DropoutState", "Reserve", "Out", "State"}},
124 125
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
126
    {"run_program", {"DOut"}},
127 128 129
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
130 131 132
    {"adamw",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
L
Leo Chen 已提交
133 134 135 136 137 138 139 140 141 142 143 144 145 146
};

// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
//     So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
//     So they need to pass the python output to C++.
//     Actually, this is not a good design, since it may break the SSA graph,
//     especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
147 148
    {"sgd", {"ParamOut"}},
    {"adam",
149 150
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
Z
zhaoyingli 已提交
151
    {"adamw",
152 153
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut",
      "MasterParamOut"}},
154 155 156
    {"average_accumulates",
     {"out_sum_1", "out_sum_2", "out_sum_3", "out_num_accumulates",
      "out_old_num_accumulates", "out_num_updates"}},
157
    {"momentum", {"ParamOut", "VelocityOut", "MasterParamOut"}},
158
    {"sparse_momentum", {"ParamOut", "VelocityOut"}},
159
    {"batch_norm", {"MeanOut", "VarianceOut"}},
C
ceci3 已提交
160
    {"sync_batch_norm", {"MeanOut", "VarianceOut"}},
161
    {"accuracy", {"Correct", "Total"}},
162
    {"fill_constant", {"Out"}},
L
lilong12 已提交
163
    {"recv_v2", {"Out"}},
164
    {"partial_recv", {"Out"}},
L
Leo Chen 已提交
165
    {"matmul", {"Out"}},
166
    {"c_broadcast", {"Out"}},
K
kuizhiqing 已提交
167 168
    {"c_sync_calc_stream", {"Out"}},
    {"c_sync_comm_stream", {"Out"}},
169 170 171 172 173 174 175
    {"c_reduce_sum", {"Out"}},
    {"c_reduce_max", {"Out"}},
    {"c_reduce_min", {"Out"}},
    {"c_reduce_prod", {"Out"}},
    {"c_reduce", {"Out"}},
    {"c_scatter", {"Out"}},
    {"barrier", {"Out"}},
L
Leo Chen 已提交
176
    {"fake_quantize_dequantize_moving_average_abs_max",
177
     {"Out", "OutScale", "OutAccum", "OutState"}},
178
    {"fake_quantize_dequantize_abs_max", {"Out", "OutScale"}},
H
huangxu96 已提交
179
    {"fake_channel_wise_quantize_dequantize_abs_max", {"Out", "OutScale"}},
180 181 182
    {"check_finite_and_unscale", {"Out", "FoundInfinite"}},
    {"update_loss_scaling",
     {"Out", "LossScaling", "OutGoodSteps", "OutBadSteps"}},
183 184
    {"moving_average_abs_max_scale",
     {"Out", "OutScale", "OutAccum", "OutState"}},
185 186
    {"lamb",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
187
    {"rnn", {"DropoutState"}},
188
    {"run_program", {"Out", "DOut", "OutScope"}},
189 190
    {"clear_float_status", {"FloatStatusOut"}},
    {"get_float_status", {"FloatStatusOut"}},
L
Leo Chen 已提交
191
};
192

193 194 195
// NOTE(pangyoki): Tensor View Strategy.
// In this case, a new output varbase will be created, and this varbase will
// reuse the input varbase's allocation.
196 197 198
// It's a map. The key of outer map is the view op name, the value is
// a pair which implies the mapping relationship between the input and
// output varbase.
199 200 201 202 203 204 205
std::map<std::string, std::pair<std::string, std::string>> view_op_map = {
    {"squeeze2", {"X", "Out"}},  // "X" -> "Out"
    {"unsqueeze2", {"X", "Out"}},
    {"reshape2", {"X", "Out"}},
    {"flatten_contiguous_range", {"X", "Out"}},
};

206 207 208 209 210 211 212 213
// NOTE(pangyoki): Inplace OP with duplicable input.
// The set includes inplace ops that have duplicable input.
// The first Varbase in input needs to be specified for the inplace strategy
// and share Varbase with the output.
std::set<std::string> inplace_op_duplicable_ins_set = {
    "sum",
};

214
// clang-format off
215
const char* OUT_INITIALIZER_TEMPLATE =
216
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase("auto_"+std::to_string(VarBaseUniqueNameID++)+"_"))}})";
217 218 219 220
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
L
Leo Chen 已提交
221

222 223 224 225
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    if (%s != nullptr) {
      ins["%s"] = {%s};
    }
226
)";
L
Leo Chen 已提交
227

228
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
L
Leo Chen 已提交
229
    if (%s.size() != 0) {
230 231
      ins["%s"] = %s;
    }
L
Leo Chen 已提交
232 233
)";

234 235
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    outs["%s"] = {%s};
236 237
)";

238 239
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    outs["%s"] = %s;
L
Leo Chen 已提交
240
)";
241 242 243 244
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

245 246 247 248 249 250 251
const char* IN_VAR_TYPE = R"(py::handle)";
const char* IN_VAR_LIST_TYPE = R"(py::handle)";

const char* OUT_VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* OUT_VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";

const char* CAST_VAR_TEMPLATE = R"(
252
    auto %s = GetVarBaseFromArgs("%s", "%s", args, %d, %s);)";
253 254

const char* CAST_VAR_LIST_TEMPLATE = R"(
255
    auto %s = GetVarBaseListFromArgs("%s", "%s", args, %d, %s);)";
256

257 258
const char* CAST_SIZE_T_TEMPLATE = R"(
    auto %s = GetUnsignedLongFromArgs("%s", "%s", args, %d, %s);)";
259

260 261 262 263 264 265 266 267 268
const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
269

270
const char* HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT = R"(
271 272 273 274
    if (ins.count("%s") && outs.count("%s")) {
      HandleViewBetweenInputAndOutput(ins["%s"][0], outs["%s"][0]);
    })";

275 276 277 278 279 280 281 282 283 284 285 286 287 288 289
const char* INPLACE_DUPLICABLE_INPUT = R"([0])";

const char* INPLACE_LEAF_ERROR_MESSAGE = R"(Leaf Var (%s) that doesn't stop gradient can't use inplace strategy.)";

const char* INPLACE_STRATEGY_TEMPLATE =
R"(
    PADDLE_ENFORCE_EQ(
      %s->IsLeaf() && !%s->OverridedStopGradient(), false,
      platform::errors::InvalidArgument("%s", %s->Name()));
    %s->BumpInplaceVersion();
    VLOG(3) << "Var(" << %s->Name() << ") uses Inplace Strategy.";
)";

const char* INPLACE_MAPPING_TEMPLATE = R"({"%s", "%s"})";

290
const char* OP_FUNCTION_TEMPLATE =
291
R"(
292
static PyObject * %s(PyObject *self, PyObject *args, PyObject *kwargs)
293
{
294 295
  PyThreadState *tstate = nullptr;
  try
296
  {
297 298 299 300
    %s
    framework::AttributeMap attrs;
    ConstructAttrMapFromPyArgs("%s", args, %d, PyTuple_GET_SIZE(args) , attrs);
    tstate = PyEval_SaveThread();
301
    %s
302 303 304
    imperative::NameVarBaseMap outs = %s;
    imperative::NameVarBaseMap ins = %s;
    %s
305
    imperative::GetCurrentTracer()->TraceOp("%s", ins, outs, attrs, {%s});
306 307
    PyEval_RestoreThread(tstate);
    tstate = nullptr;
308
    %s
309
  }
310 311 312 313 314 315 316
  catch(...) {
    if (tstate) {
      PyEval_RestoreThread(tstate);
    }
    ThrowExceptionToPython(std::current_exception());
    return nullptr;
  }
317
})";
318

319
const char* PYBIND_ITEM_TEMPLATE = R"(  {"%s", (PyCFunction)(void(*)(void))%s, METH_VARARGS | METH_KEYWORDS, "C++ interface function for %s in dygraph."},)";
320

321
// clang-format on
L
Leo Chen 已提交
322 323
static inline bool FindInsMap(const std::string& op_type,
                              const std::string& in_name) {
324 325 326
  return op_ins_map[op_type].count(in_name);
}

L
Leo Chen 已提交
327 328 329 330 331 332 333 334
static inline bool FindOutsMap(const std::string& op_type,
                               const std::string& out_name) {
  return op_outs_map[op_type].count(out_name);
}

static inline bool FindPassingOutsMap(const std::string& op_type,
                                      const std::string& out_name) {
  return op_passing_outs_map[op_type].count(out_name);
335
}
336

337 338 339 340
static inline bool FindDuplicableInputInplaceOpSet(const std::string& op_type) {
  return inplace_op_duplicable_ins_set.count(op_type);
}

341 342 343 344
static inline bool FindViewOpMap(const std::string& op_type) {
  return view_op_map.count(op_type);
}

345 346 347 348
static inline std::string TempName(const std::string& name) {
  return name + '_';
}

349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
std::string GenerateOpFunctionsBody(
    const paddle::framework::proto::OpProto* op_proto, std::string func_name,
    bool use_inplace_strategy = false,
    std::map<std::string, std::string> inplace_map = {}) {
  auto& op_type = op_proto->type();
  std::string input_args = "";
  std::string ins_initializer = "{";
  std::string ins_initializer_with_null = "";
  std::string py_arg = "";
  int arg_idx = 0;
  int input_args_num = 0;
  std::string ins_cast_str = "";
  std::string view_strategy_str = "";
  std::string inplace_strategy_str = "";
  for (auto& input : op_proto->inputs()) {
    auto& in_name = input.name();
    // skip those dispensable inputs, like ResidualData in conv2d
    if (input.dispensable() && !FindInsMap(op_type, in_name)) {
      continue;
    }
    const auto in_type = input.duplicable() ? IN_VAR_LIST_TYPE : IN_VAR_TYPE;
    auto input_arg =
        paddle::string::Sprintf(ARG_TEMPLATE, in_type, TempName(in_name));
    input_args += input_arg;
    input_args += ",";
    input_args_num++;
    const auto in_cast_type =
        input.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
    auto dispensable = input.dispensable() ? "true" : "false";
378 379
    ins_cast_str += paddle::string::Sprintf(in_cast_type, in_name, op_type,
                                            in_name, arg_idx++, dispensable);
380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399

    if (input.dispensable()) {
      const auto in_template = input.duplicable()
                                   ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                   : INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
      ins_initializer_with_null +=
          paddle::string::Sprintf(in_template, in_name, in_name, in_name);
    } else {
      const auto in_template = input.duplicable()
                                   ? INPUT_LIST_INITIALIZER_TEMPLATE
                                   : INPUT_INITIALIZER_TEMPLATE;
      ins_initializer += paddle::string::Sprintf(in_template, in_name, in_name);
      ins_initializer += ",";
    }
  }
  if (ins_initializer.back() == ',') {
    ins_initializer.pop_back();
  }
  ins_initializer += "}";

400
  if (!input_args.empty() && input_args.back() == ',') {
401 402 403 404 405 406 407 408 409 410 411 412
    input_args.pop_back();
  }

  // Generate outs initializer
  std::string outs_initializer = "{";
  std::string outs_initializer_with_null = "";
  std::string inplace_mapping_str = "";
  std::string return_str = "";

  int outs_num = 0;
  for (auto& output : op_proto->outputs()) {
    auto& out_name = output.name();
413

414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
    // skip those dispensable oututs
    if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
      continue;
    }
    const auto out_type =
        output.duplicable() ? OUT_VAR_LIST_TYPE : OUT_VAR_TYPE;
    const auto return_template =
        output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;

    if (FindPassingOutsMap(op_type, out_name)) {
      if (input_args != "") {
        input_args += ",";
      }
      input_args += out_type;
      input_args += out_name;
      input_args_num++;

      if (output.dispensable()) {
        const auto out_template =
            output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        outs_initializer_with_null +=
            paddle::string::Sprintf(out_template, out_name, out_name);
      } else {
        const auto out_template = output.duplicable()
                                      ? INPUT_LIST_INITIALIZER_TEMPLATE
                                      : INPUT_INITIALIZER_TEMPLATE;
        outs_initializer +=
            paddle::string::Sprintf(out_template, out_name, out_name);
        outs_initializer += ",";
      }
445 446 447 448 449 450

      const auto in_cast_type =
          output.duplicable() ? CAST_VAR_LIST_TEMPLATE : CAST_VAR_TEMPLATE;
      auto dispensable = output.dispensable() ? "true" : "false";
      ins_cast_str += paddle::string::Sprintf(in_cast_type, out_name, op_type,
                                              out_name, arg_idx++, dispensable);
451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
    } else if (use_inplace_strategy && inplace_map.count(out_name)) {
      PADDLE_ENFORCE_NE(
          inplace_map[out_name], "",
          paddle::platform::errors::InvalidArgument(
              "Inplace op %s has no input corresponding to output %s.", op_type,
              out_name));

      // TODO(pangyoki): Inplace op don't have duplicable output in temporary,
      // so don't support duplicable output now.
      const auto out_template = INPUT_INITIALIZER_TEMPLATE;

      auto inplace_input_name = inplace_map[out_name];
      inplace_mapping_str += paddle::string::Sprintf(
          INPLACE_MAPPING_TEMPLATE, inplace_input_name, out_name);
      inplace_mapping_str += ",";

      // If inplace op has duplicable input, the first Varbase in input will
      // share Varbase with output.
      if (FindDuplicableInputInplaceOpSet(op_type)) {
        inplace_input_name += INPLACE_DUPLICABLE_INPUT;
      }

      // Leaf Var that doesn't stop gradient can't use inplace strategy.
      // Increase inplace_version.
      inplace_strategy_str += paddle::string::Sprintf(
          INPLACE_STRATEGY_TEMPLATE, inplace_input_name, inplace_input_name,
          INPLACE_LEAF_ERROR_MESSAGE, inplace_input_name, inplace_input_name,
          inplace_input_name);
      outs_initializer +=
          paddle::string::Sprintf(out_template, out_name, inplace_input_name);
      outs_initializer += ",";
    } else {
      // There are few Operators that have duplicable output, like `Out` in
      // split op. We need to specify the number of variables for the
      // duplicable output, as the argument OutNum;
      if (output.duplicable()) {
        if (input_args != "") {
          input_args += ",";
        }
        auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
        input_args += ARG_OUT_NUM_TYPE;
        input_args += out_num_str;
        input_args_num++;
        outs_initializer += paddle::string::Sprintf(
            OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
496 497 498 499 500

        auto dispensable = output.dispensable() ? "true" : "false";
        ins_cast_str +=
            paddle::string::Sprintf(CAST_SIZE_T_TEMPLATE, out_num_str, op_type,
                                    out_num_str, arg_idx++, dispensable);
501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
      } else {
        outs_initializer +=
            paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
      }
      outs_initializer += ",";
    }

    return_str += paddle::string::Sprintf(return_template, out_name);
    return_str += ",";
    outs_num += 1;
  }
  if (outs_initializer.back() == ',') {
    outs_initializer.pop_back();
    return_str.pop_back();
  }
  outs_initializer += "}";
517
  if (!inplace_mapping_str.empty() && inplace_mapping_str.back() == ',') {
518 519 520 521 522 523 524 525 526 527
    inplace_mapping_str.pop_back();
  }
  if (!use_inplace_strategy && FindViewOpMap(op_type)) {
    std::string viwe_input_name = view_op_map[op_type].first;
    std::string viwe_output_name = view_op_map[op_type].second;
    view_strategy_str += paddle::string::Sprintf(
        HANDLE_VIEW_BETWEEN_INPUT_AND_OUTPUT, viwe_input_name, viwe_output_name,
        viwe_input_name, viwe_output_name);
  }
  if (outs_num == 0) {
528
    return_str = "Py_INCREF(Py_None);\n    return Py_None;";
529
  } else if (outs_num == 1) {
530
    return_str = "return MakeReturnPyObject(" + return_str + ");";
531
  } else {
532
    return_str = "return MakeReturnPyObject(" +
533
                 paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str) +
534
                 ");";
535 536 537 538 539 540 541 542 543 544
  }
  std::string function_args = "";
  if (input_args == "") {
    function_args = FUNCTION_ARGS_NO_INPUT;
  } else {
    function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
  }

  // generate op funtcion body
  auto op_function_str = paddle::string::Sprintf(
545 546 547 548
      OP_FUNCTION_TEMPLATE, func_name, ins_cast_str, op_type, input_args_num,
      inplace_strategy_str, outs_initializer, ins_initializer,
      ins_initializer_with_null + outs_initializer_with_null +
          view_strategy_str,
549 550 551 552 553
      op_type, inplace_mapping_str, return_str);

  return op_function_str;
}

554
static std::tuple<std::vector<std::string>, std::vector<std::string>>
555
GenerateOpFunctions() {
556 557
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

558
  std::vector<std::string> op_function_list, bind_function_list;
559 560
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

561 562 563 564 565 566 567
  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
568 569
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
570 571 572
    // if the pten lib contains op kernel, we still generate ops method
    if (!all_kernels.count(op_type) &&
        !pten::KernelFactory::Instance().HasCompatiblePtenKernel(op_type)) {
573 574
      continue;
    }
575

576 577 578 579 580 581 582 583 584 585 586 587 588 589
    // NOTE(pangyoki): Inplace Strategy.
    // In this case, output will reuse input varbase.
    // Dygraph mode needs to be aligned with the in-place strategy in static
    // mode, and the mapping relationships between output and input that have
    // been defined in static mode should be used in dygraph mode.
    // Find which ops need to use Inplace strategy in static mode, and get the
    // mapping relationship between Inplace output and input.
    auto& infer_inplace =
        paddle::framework::OpInfoMap::Instance().Get(op_type).infer_inplace_;
    std::map<std::string, std::string> inplace_map;
    if (infer_inplace) {
      auto in_to_outs = infer_inplace(true);
      for (auto& inplace_pair : in_to_outs) {
        inplace_map[inplace_pair.second] = inplace_pair.first;
590 591
      }
    }
592

593
    std::string func_name = "imperative_" + op_type;
594
    std::string op_function_str = GenerateOpFunctionsBody(op_proto, func_name);
595 596

    // generate pybind item
597
    auto bind_function_str = paddle::string::Sprintf(
598
        PYBIND_ITEM_TEMPLATE, op_type, func_name, op_type);
599 600 601

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
602 603 604 605 606 607 608 609 610 611 612

    if (infer_inplace) {
      // Reuse Varbase Inplace OP: op_type_.
      // The inplace OP needs a new implementation method.
      std::string inplace_op_type = op_type + "_";
      std::string inplace_func_name = "imperative_" + inplace_op_type;
      std::string inplace_op_function_str = GenerateOpFunctionsBody(
          op_proto, inplace_func_name, true, inplace_map);

      // generate pybind item
      auto inplace_bind_function_str =
613 614
          paddle::string::Sprintf(PYBIND_ITEM_TEMPLATE, inplace_op_type,
                                  inplace_func_name, inplace_op_type);
615 616 617 618

      op_function_list.emplace_back(std::move(inplace_op_function_str));
      bind_function_list.emplace_back(std::move(inplace_bind_function_str));
    }
619
  }
620
  return std::make_tuple(op_function_list, bind_function_list);
621 622 623 624 625 626 627 628
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

629
#ifdef PADDLE_WITH_ASCEND_CL
630 631 632 633
  auto ascend_ptr = paddle::framework::AscendInstance::GetInstance();
  ascend_ptr->InitGEForUT();
#endif

634 635 636
  std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\"",
                                   "\"pybind11/detail/common.h\"",
                                   "<Python.h>"};
637 638 639 640 641 642 643 644 645

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

646 647 648
  out << "\n\n";

  auto op_funcs = GenerateOpFunctions();
649

650
  out << "namespace paddle {\n"
651 652
      << "namespace pybind {\n\n";
  out << "std::atomic<int> VarBaseUniqueNameID{0};\n";
653 654
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";
655

656 657 658 659
  out << "static PyMethodDef ExtestMethods[] = {\n"
      << paddle::string::join_strings(std::get<1>(op_funcs), '\n')
      << "\n  {nullptr,nullptr,0,nullptr}"
      << "};\n\n";
660

661 662 663 664 665 666 667 668
  out << "inline void BindOpFunctions(pybind11::module *module) {\n"
      << "  auto m = module->def_submodule(\"ops\");\n"
      << "  if (PyModule_AddFunctions(m.ptr(), ExtestMethods) < 0) {\n"
      << "    PADDLE_THROW(platform::errors::Fatal (\"Add functions to "
         "core.ops failed!\"));\n"
      << "  }\n\n"
      << "  InitOpsAttrTypeMap();"
      << "}\n\n"
669 670 671 672
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();
673

674
#ifdef PADDLE_WITH_ASCEND_CL
675 676
  ge::GEFinalize();
#endif
677

678 679
  return 0;
}