op_function_generator.cc 13.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
16 17 18 19 20 21 22 23 24 25 26
#include <fstream>
#include <iostream>
#include <string>

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"

L
Leo Chen 已提交
27 28 29 30 31 32 33 34
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
35 36
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
C
ceci3 已提交
37
    {"instance_norm", {"X", "Scale", "Bias"}},
38 39 40
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
L
Leo Chen 已提交
41 42
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"X", "InScale", "InAccum", "InState"}},
43
};
L
Leo Chen 已提交
44 45 46 47 48 49 50 51 52 53 54 55

// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
56 57 58
    {"batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
L
Leo Chen 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72
};

// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
//     So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
//     So they need to pass the python output to C++.
//     Actually, this is not a good design, since it may break the SSA graph,
//     especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
73 74 75 76 77 78
    {"sgd", {"ParamOut"}},
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
    {"momentum", {"ParamOut", "VelocityOut"}},
    {"batch_norm", {"MeanOut", "VarianceOut"}},
    {"accuracy", {"Correct", "Total"}},
79
    {"fill_constant", {"Out"}},
L
Leo Chen 已提交
80 81
    {"matmul", {"Out"}},
    {"fake_quantize_dequantize_moving_average_abs_max",
82
     {"Out", "OutScale", "OutAccum", "OutState"}},
83
    {"amp_check_finite_and_scale", {"Out", "FoundInfinite"}},
L
Leo Chen 已提交
84
};
85

86
// clang-format off
87 88
const char* OUT_INITIALIZER_TEMPLATE =
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase(tracer->GenerateUniqueName()))}})";
89 90 91 92
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
L
Leo Chen 已提交
93 94 95 96 97

const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(	
    if (%s != nullptr) {	
      ins["%s"] = {%s};	
    }	
98
)";
L
Leo Chen 已提交
99 100 101 102 103 104 105

const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(	
    if (%s.size() != 0) {
      ins["%s"] = %s;	
    }	
)";

106 107
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    outs["%s"] = {%s};
108 109
)";

110 111
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    outs["%s"] = %s;
L
Leo Chen 已提交
112
)";
113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

const char* VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";
const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TYPE = R"(%s)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
129 130

const char* OP_FUNCTION_TEMPLATE =
131
R"(
132
%s %s(%s)
133
{
134 135 136 137 138 139 140 141 142 143 144
  framework::AttributeMap attrs;
  ConstructAttrMapFromPyArgs(&attrs, args);
  {
    py::gil_scoped_release release;
    auto tracer = imperative::GetCurrentTracer();
    imperative::NameVarBaseMap outs = %s;
    imperative::NameVarBaseMap ins = %s;
    %s
    tracer->TraceOp("%s", ins, outs, attrs);
    return %s; 
  }   
145
})";
146

147
const char* PYBIND_ITEM_TEMPLATE = R"(  %s.def("%s", &%s);)";
148

149
// clang-format on
L
Leo Chen 已提交
150 151
static inline bool FindInsMap(const std::string& op_type,
                              const std::string& in_name) {
152 153 154
  return op_ins_map[op_type].count(in_name);
}

L
Leo Chen 已提交
155 156 157 158 159 160 161 162
static inline bool FindOutsMap(const std::string& op_type,
                               const std::string& out_name) {
  return op_outs_map[op_type].count(out_name);
}

static inline bool FindPassingOutsMap(const std::string& op_type,
                                      const std::string& out_name) {
  return op_passing_outs_map[op_type].count(out_name);
163
}
164 165 166

static std::tuple<std::vector<std::string>, std::vector<std::string>>
GenerateOpFunctions(const std::string& module_name) {
167 168
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

169
  std::vector<std::string> op_function_list, bind_function_list;
170 171
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

172 173 174 175 176 177 178
  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
179 180 181 182 183 184 185 186 187 188 189 190
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
    if (!all_kernels.count(op_type)) {
      continue;
    }
    std::string input_args = "";
    std::string ins_initializer = "{";
    std::string ins_initializer_with_null = "";
    std::string py_arg = "";
    for (auto& input : op_proto->inputs()) {
      auto& in_name = input.name();
      // skip those dispensable inputs, like ResidualData in conv2d
L
Leo Chen 已提交
191
      if (input.dispensable() && !FindInsMap(op_type, in_name)) {
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
        continue;
      }
      const auto in_type = input.duplicable() ? VAR_LIST_TYPE : VAR_TYPE;
      auto input_arg = paddle::string::Sprintf(ARG_TEMPLATE, in_type, in_name);
      input_args += input_arg;
      input_args += ",";

      if (input.dispensable()) {
        const auto in_template = input.duplicable()
                                     ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                     : INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        ins_initializer_with_null +=
            paddle::string::Sprintf(in_template, in_name, in_name, in_name);
      } else {
        const auto in_template = input.duplicable()
                                     ? INPUT_LIST_INITIALIZER_TEMPLATE
                                     : INPUT_INITIALIZER_TEMPLATE;
        ins_initializer +=
            paddle::string::Sprintf(in_template, in_name, in_name);
        ins_initializer += ",";
      }
    }
    if (ins_initializer.back() == ',') {
      ins_initializer.pop_back();
    }
    ins_initializer += "}";

    if (input_args.back() == ',') {
      input_args.pop_back();
    }
222 223 224

    // Generate outs initializer
    std::string outs_initializer = "{";
L
Leo Chen 已提交
225
    std::string outs_initializer_with_null = "";
226 227
    std::string return_type = "";
    std::string return_str = "";
228

229
    int outs_num = 0;
230
    for (auto& output : op_proto->outputs()) {
L
Leo Chen 已提交
231 232 233
      auto& out_name = output.name();
      // skip those dispensable oututs
      if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
234 235 236 237 238
        continue;
      }
      const auto out_type = output.duplicable() ? VAR_LIST_TYPE : VAR_TYPE;
      const auto return_template =
          output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;
L
Leo Chen 已提交
239
      if (FindPassingOutsMap(op_type, out_name)) {
240 241 242 243 244
        if (input_args != "") {
          input_args += ",";
        }
        input_args += out_type;
        input_args += out_name;
L
Leo Chen 已提交
245 246 247 248 249

        if (output.dispensable()) {
          const auto out_template =
              output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                  : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
250 251
          outs_initializer_with_null +=
              paddle::string::Sprintf(out_template, out_name, out_name);
L
Leo Chen 已提交
252 253 254 255 256 257 258 259
        } else {
          const auto out_template = output.duplicable()
                                        ? INPUT_LIST_INITIALIZER_TEMPLATE
                                        : INPUT_INITIALIZER_TEMPLATE;
          outs_initializer +=
              paddle::string::Sprintf(out_template, out_name, out_name);
          outs_initializer += ",";
        }
260 261 262 263 264 265 266 267 268 269 270
      } else {
        // There are few Operators that have duplicable output, like `Out` in
        // split op. We need to specify the number of variables for the
        // duplicable output, as the argument OutNum;
        if (output.duplicable()) {
          if (input_args != "") {
            input_args += ",";
          }
          auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
          input_args += ARG_OUT_NUM_TYPE;
          input_args += out_num_str;
L
Leo Chen 已提交
271
          outs_initializer += paddle::string::Sprintf(
272 273
              OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
        } else {
L
Leo Chen 已提交
274
          outs_initializer +=
275 276
              paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
        }
L
Leo Chen 已提交
277
        outs_initializer += ",";
278 279 280 281 282 283 284
      }

      return_type += out_type;
      return_type += ",";
      return_str += paddle::string::Sprintf(return_template, out_name);
      return_str += ",";
      outs_num += 1;
285 286 287
    }
    if (outs_initializer.back() == ',') {
      outs_initializer.pop_back();
288 289
      return_type.pop_back();
      return_str.pop_back();
290 291
    }
    outs_initializer += "}";
292 293 294 295 296 297 298 299 300
    if (outs_num == 0) {
      return_type = "void";
    }
    if (outs_num > 1) {
      return_str = paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str);
      return_type = paddle::string::Sprintf(RETURN_TUPLE_TYPE, return_type);
    }
    std::string function_args = "";
    if (input_args == "") {
301
      function_args = FUNCTION_ARGS_NO_INPUT;
302 303 304
    } else {
      function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
    }
305

306
    std::string func_name = "imperative_" + op_type;
307
    // generate op funtcion body
308
    auto op_function_str = paddle::string::Sprintf(
309
        OP_FUNCTION_TEMPLATE, return_type, func_name, function_args,
L
Leo Chen 已提交
310 311
        outs_initializer, ins_initializer,
        ins_initializer_with_null + outs_initializer_with_null, op_type,
312
        return_str);
313 314

    // generate pybind item
315 316 317 318 319
    auto bind_function_str = paddle::string::Sprintf(
        PYBIND_ITEM_TEMPLATE, module_name, op_type, func_name);

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
320
  }
321
  return std::make_tuple(op_function_list, bind_function_list);
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

  std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\""};

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

340 341
  auto op_funcs = GenerateOpFunctions("m");

342 343 344
  out << "namespace py = pybind11;"
      << "\n";
  out << "namespace paddle {\n"
345 346 347
      << "namespace pybind {\n";
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";
348

349 350
  out << "inline void BindOpFunctions(pybind11::module *module) {\n"
      << "  auto m = module->def_submodule(\"ops\");\n\n";
351

352 353
  out << paddle::string::join_strings(std::get<1>(op_funcs), '\n');
  out << "\n";
354 355 356 357 358 359 360
  out << "}\n\n"
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();
  return 0;
}