op_function_generator.cc 10.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
16 17 18 19 20 21 22 23 24 25 26
#include <fstream>
#include <iostream>
#include <string>

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"

27 28 29 30 31 32 33 34 35 36 37 38 39
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
};
std::map<std::string, std::set<std::string>> op_passing_out_map = {
    {"sgd", {"ParamOut"}},
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
    {"momentum", {"ParamOut", "VelocityOut"}},
    {"batch_norm", {"MeanOut", "VarianceOut"}},
    {"accuracy", {"Correct", "Total"}},
40 41
    {"fill_constant", {"Out"}},
    {"matmul", {"Out"}}};
42

43
// clang-format off
44 45
const char* OUT_INITIALIZER_TEMPLATE =
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase(tracer->GenerateUniqueName()))}})";
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    if (%s != nullptr) {
      ins["%s"] = {%s};
    }
)";
const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    if (%s != nullptr) {
      ins["%s"] = %s;
    }
)";

// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

const char* VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";
const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TYPE = R"(%s)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
77 78

const char* OP_FUNCTION_TEMPLATE =
79
R"(
80
%s %s(%s)
81
{
82 83 84 85 86 87 88 89 90 91 92
  framework::AttributeMap attrs;
  ConstructAttrMapFromPyArgs(&attrs, args);
  {
    py::gil_scoped_release release;
    auto tracer = imperative::GetCurrentTracer();
    imperative::NameVarBaseMap outs = %s;
    imperative::NameVarBaseMap ins = %s;
    %s
    tracer->TraceOp("%s", ins, outs, attrs);
    return %s; 
  }   
93
})";
94

95
const char* PYBIND_ITEM_TEMPLATE = R"(  %s.def("%s", &%s);)";
96

97
// clang-format on
98 99 100 101 102 103 104 105 106
static inline bool FindInputInSpecialization(const std::string& op_type,
                                             const std::string& in_name) {
  return op_ins_map[op_type].count(in_name);
}

static inline bool FindOutoutInSpecialization(const std::string& op_type,
                                              const std::string& out_name) {
  return op_passing_out_map[op_type].count(out_name);
}
107 108 109

static std::tuple<std::vector<std::string>, std::vector<std::string>>
GenerateOpFunctions(const std::string& module_name) {
110 111
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

112
  std::vector<std::string> op_function_list, bind_function_list;
113 114
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

115 116 117 118 119 120 121
  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
    if (!all_kernels.count(op_type)) {
      continue;
    }
    std::string input_args = "";
    std::string ins_initializer = "{";
    std::string ins_initializer_with_null = "";
    std::string py_arg = "";
    for (auto& input : op_proto->inputs()) {
      auto& in_name = input.name();
      // skip those dispensable inputs, like ResidualData in conv2d
      if (input.dispensable() && !FindInputInSpecialization(op_type, in_name)) {
        continue;
      }
      const auto in_type = input.duplicable() ? VAR_LIST_TYPE : VAR_TYPE;
      auto input_arg = paddle::string::Sprintf(ARG_TEMPLATE, in_type, in_name);
      input_args += input_arg;
      input_args += ",";

      if (input.dispensable()) {
        const auto in_template = input.duplicable()
                                     ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                     : INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        ins_initializer_with_null +=
            paddle::string::Sprintf(in_template, in_name, in_name, in_name);
      } else {
        const auto in_template = input.duplicable()
                                     ? INPUT_LIST_INITIALIZER_TEMPLATE
                                     : INPUT_INITIALIZER_TEMPLATE;
        ins_initializer +=
            paddle::string::Sprintf(in_template, in_name, in_name);
        ins_initializer += ",";
      }
    }
    if (ins_initializer.back() == ',') {
      ins_initializer.pop_back();
    }
    ins_initializer += "}";

    if (input_args.back() == ',') {
      input_args.pop_back();
    }
165 166 167

    // Generate outs initializer
    std::string outs_initializer = "{";
168 169
    std::string return_type = "";
    std::string return_str = "";
170

171
    int outs_num = 0;
172
    for (auto& output : op_proto->outputs()) {
173 174 175 176 177 178
      if (output.dispensable()) {
        continue;
      }
      const auto out_type = output.duplicable() ? VAR_LIST_TYPE : VAR_TYPE;
      const auto return_template =
          output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;
179
      auto& out_name = output.name();
180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
      std::string out_initializer_str;
      if (FindOutoutInSpecialization(op_type, out_name)) {
        if (input_args != "") {
          input_args += ",";
        }
        input_args += out_type;
        input_args += out_name;
        const auto out_template = output.duplicable()
                                      ? INPUT_LIST_INITIALIZER_TEMPLATE
                                      : INPUT_INITIALIZER_TEMPLATE;
        out_initializer_str +=
            paddle::string::Sprintf(out_template, out_name, out_name);
      } else {
        // There are few Operators that have duplicable output, like `Out` in
        // split op. We need to specify the number of variables for the
        // duplicable output, as the argument OutNum;
        if (output.duplicable()) {
          if (input_args != "") {
            input_args += ",";
          }
          auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
          input_args += ARG_OUT_NUM_TYPE;
          input_args += out_num_str;
          out_initializer_str = paddle::string::Sprintf(
              OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
        } else {
          out_initializer_str =
              paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
        }
      }

      return_type += out_type;
      return_type += ",";
      return_str += paddle::string::Sprintf(return_template, out_name);
      return_str += ",";
      outs_num += 1;

217 218 219 220 221
      outs_initializer += out_initializer_str;
      outs_initializer += ",";
    }
    if (outs_initializer.back() == ',') {
      outs_initializer.pop_back();
222 223
      return_type.pop_back();
      return_str.pop_back();
224 225
    }
    outs_initializer += "}";
226 227 228 229 230 231 232 233 234
    if (outs_num == 0) {
      return_type = "void";
    }
    if (outs_num > 1) {
      return_str = paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str);
      return_type = paddle::string::Sprintf(RETURN_TUPLE_TYPE, return_type);
    }
    std::string function_args = "";
    if (input_args == "") {
235
      function_args = FUNCTION_ARGS_NO_INPUT;
236 237 238
    } else {
      function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
    }
239

240
    std::string func_name = "imperative_" + op_type;
241
    // generate op funtcion body
242
    auto op_function_str = paddle::string::Sprintf(
243 244 245
        OP_FUNCTION_TEMPLATE, return_type, func_name, function_args,
        outs_initializer, ins_initializer, ins_initializer_with_null, op_type,
        return_str);
246 247

    // generate pybind item
248 249 250 251 252
    auto bind_function_str = paddle::string::Sprintf(
        PYBIND_ITEM_TEMPLATE, module_name, op_type, func_name);

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
253
  }
254
  return std::make_tuple(op_function_list, bind_function_list);
255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

  std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\""};

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

273 274
  auto op_funcs = GenerateOpFunctions("m");

275 276 277
  out << "namespace py = pybind11;"
      << "\n";
  out << "namespace paddle {\n"
278 279 280
      << "namespace pybind {\n";
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";
281

282 283
  out << "inline void BindOpFunctions(pybind11::module *module) {\n"
      << "  auto m = module->def_submodule(\"ops\");\n\n";
284

285 286
  out << paddle::string::join_strings(std::get<1>(op_funcs), '\n');
  out << "\n";
287 288 289 290 291 292 293
  out << "}\n\n"
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();
  return 0;
}