op_function_generator.cc 13.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

15
#include <algorithm>
16 17 18 19 20 21 22 23 24 25 26
#include <fstream>
#include <iostream>
#include <string>

#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/pybind/pybind.h"
#include "paddle/fluid/string/string_helper.h"

L
Leo Chen 已提交
27 28 29 30 31 32 33 34
// NOTE(zhiqiu): Commonly, the inputs in auto-generated OP function are
// determined by the OP`s proto automatically, i.e., all the inputs registered
// in OpMaker.
// However, some OPs have dispensable inputs, which means the input can
// be none for some conditions. It is discovered that most dispensable inputs
// is not used in imperative mode, so we drop those inputs when generating OP
// functions. While, for very few OPs, the dispensable inputs are used, we
// need to manually specify them in this map.
35 36
std::map<std::string, std::set<std::string>> op_ins_map = {
    {"layer_norm", {"X", "Scale", "Bias"}},
C
ceci3 已提交
37
    {"instance_norm", {"X", "Scale", "Bias"}},
38 39 40
    {"gru_unit", {"Input", "HiddenPrev", "Weight", "Bias"}},
    {"label_smooth", {"X", "PriorDist"}},
    {"assign", {"X"}},
L
Leo Chen 已提交
41 42
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"X", "InScale", "InAccum", "InState"}},
43
    {"nll_loss", {"X", "Label", "Weight"}},
44
};
L
Leo Chen 已提交
45 46 47 48 49 50 51 52 53 54 55 56

// NOTE(zhiqiu): Like op_ins_map.
// Commonly, the outputs in auto-generated OP function are determined by the
// OP`s proto automatically, i.e., all the outputs registered in OpMaker.
// However, some OPs have dispensable outputs, which means the output can
// be none for some conditions. It is discovered that most dispensable outputs
// is not used in imperative mode, so we drop those outputs when generating OP
// functions. While, for very few OPs, the dispensable outputs are used, we
// need to manually specify them in this map.
std::map<std::string, std::set<std::string>> op_outs_map = {
    {"fake_quantize_dequantize_moving_average_abs_max",
     {"Out", "OutScale", "OutAccum", "OutState"}},
57 58 59
    {"batch_norm",
     {"Y", "MeanOut", "VarianceOut", "SavedMean", "SavedVariance",
      "ReserveSpace"}},
L
Leo Chen 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73
};

// NOTE(zhiqiu): Commonly, the outputs in auto-generated OP function are
// generated in C++ automatically.
// However, some OPs need to pass the outputs from Python instead of generating
// them in C++. There are mainly 2 reasons for that,
// (1) Optimizer OPs need to update the input param in-place, like sgd.
//     So they need to pass the output which is same as input param.
// (2) Very few python APIs has out in their arguments, like fill_constant.
//     So they need to pass the python output to C++.
//     Actually, this is not a good design, since it may break the SSA graph,
//     especially in declarative mode.
// For those OPs, we need to manually specify the outs need to pass in this map.
std::map<std::string, std::set<std::string>> op_passing_outs_map = {
74 75 76 77 78 79
    {"sgd", {"ParamOut"}},
    {"adam",
     {"ParamOut", "Moment1Out", "Moment2Out", "Beta1PowOut", "Beta2PowOut"}},
    {"momentum", {"ParamOut", "VelocityOut"}},
    {"batch_norm", {"MeanOut", "VarianceOut"}},
    {"accuracy", {"Correct", "Total"}},
80
    {"fill_constant", {"Out"}},
L
Leo Chen 已提交
81 82
    {"matmul", {"Out"}},
    {"fake_quantize_dequantize_moving_average_abs_max",
83
     {"Out", "OutScale", "OutAccum", "OutState"}},
84
    {"fake_quantize_dequantize_abs_max", {"Out", "OutScale"}},
85
    {"amp_check_finite_and_scale", {"Out", "FoundInfinite"}},
L
Leo Chen 已提交
86
};
87

88
// clang-format off
89 90
const char* OUT_INITIALIZER_TEMPLATE =
    R"({"%s", {std::shared_ptr<imperative::VarBase>(new imperative::VarBase(tracer->GenerateUniqueName()))}})";
91 92 93 94
const char* OUT_DUPLICABLE_INITIALIZER_TEMPLATE = R"({"%s", ConstructDuplicableOutput(%s)})";

const char* INPUT_INITIALIZER_TEMPLATE = R"({"%s", {%s}})";
const char* INPUT_LIST_INITIALIZER_TEMPLATE = R"({"%s", %s})";
L
Leo Chen 已提交
95 96 97 98 99

const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(	
    if (%s != nullptr) {	
      ins["%s"] = {%s};	
    }	
100
)";
L
Leo Chen 已提交
101 102 103 104 105 106 107

const char* INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(	
    if (%s.size() != 0) {
      ins["%s"] = %s;	
    }	
)";

108 109
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL = R"(
    outs["%s"] = {%s};
110 111
)";

112 113
const char* OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST = R"(
    outs["%s"] = %s;
L
Leo Chen 已提交
114
)";
115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
// if inputs is list, no need {}
const char* ARG_OUT_NUM = R"(%sNum)";
const char* ARG_OUT_NUM_TYPE = R"(size_t )";

const char* VAR_TYPE = R"(std::shared_ptr<imperative::VarBase>)";
const char* VAR_LIST_TYPE = R"(std::vector<std::shared_ptr<imperative::VarBase>>)";
const char* ARG_TEMPLATE = R"(const %s& %s)";

const char* RETURN_TUPLE_TYPE = R"(std::tuple<%s>)";
const char* RETURN_TYPE = R"(%s)";
const char* RETURN_TUPLE_TEMPLATE = R"(std::make_tuple(%s))";
const char* RETURN_LIST_TEMPLATE = R"(outs["%s"])";
const char* RETURN_TEMPLATE = R"(outs["%s"][0])";

const char* FUNCTION_ARGS = R"(%s, const py::args& args)";
const char* FUNCTION_ARGS_NO_INPUT = R"(const py::args& args)";
131 132

const char* OP_FUNCTION_TEMPLATE =
133
R"(
134
%s %s(%s)
135
{
136 137 138 139 140 141 142 143 144 145 146
  framework::AttributeMap attrs;
  ConstructAttrMapFromPyArgs(&attrs, args);
  {
    py::gil_scoped_release release;
    auto tracer = imperative::GetCurrentTracer();
    imperative::NameVarBaseMap outs = %s;
    imperative::NameVarBaseMap ins = %s;
    %s
    tracer->TraceOp("%s", ins, outs, attrs);
    return %s; 
  }   
147
})";
148

149
const char* PYBIND_ITEM_TEMPLATE = R"(  %s.def("%s", &%s);)";
150

151
// clang-format on
L
Leo Chen 已提交
152 153
static inline bool FindInsMap(const std::string& op_type,
                              const std::string& in_name) {
154 155 156
  return op_ins_map[op_type].count(in_name);
}

L
Leo Chen 已提交
157 158 159 160 161 162 163 164
static inline bool FindOutsMap(const std::string& op_type,
                               const std::string& out_name) {
  return op_outs_map[op_type].count(out_name);
}

static inline bool FindPassingOutsMap(const std::string& op_type,
                                      const std::string& out_name) {
  return op_passing_outs_map[op_type].count(out_name);
165
}
166 167 168

static std::tuple<std::vector<std::string>, std::vector<std::string>>
GenerateOpFunctions(const std::string& module_name) {
169 170
  auto& op_info_map = paddle::framework::OpInfoMap::Instance().map();

171
  std::vector<std::string> op_function_list, bind_function_list;
172 173
  auto& all_kernels = paddle::framework::OperatorWithKernel::AllOpKernels();

174 175 176 177 178 179 180
  for (auto& pair : op_info_map) {
    auto& op_info = pair.second;
    auto op_proto = op_info.proto_;
    if (op_proto == nullptr) {
      continue;
    }
    auto& op_type = op_proto->type();
181 182 183 184 185 186 187 188 189 190 191 192
    // Skip ooerator which is not inherit form OperatorWithKernel, like while,
    // since only OperatorWithKernel can run in dygraph mode.
    if (!all_kernels.count(op_type)) {
      continue;
    }
    std::string input_args = "";
    std::string ins_initializer = "{";
    std::string ins_initializer_with_null = "";
    std::string py_arg = "";
    for (auto& input : op_proto->inputs()) {
      auto& in_name = input.name();
      // skip those dispensable inputs, like ResidualData in conv2d
L
Leo Chen 已提交
193
      if (input.dispensable() && !FindInsMap(op_type, in_name)) {
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
        continue;
      }
      const auto in_type = input.duplicable() ? VAR_LIST_TYPE : VAR_TYPE;
      auto input_arg = paddle::string::Sprintf(ARG_TEMPLATE, in_type, in_name);
      input_args += input_arg;
      input_args += ",";

      if (input.dispensable()) {
        const auto in_template = input.duplicable()
                                     ? INPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                     : INPUT_INITIALIZER_TEMPLATE_WITH_NULL;
        ins_initializer_with_null +=
            paddle::string::Sprintf(in_template, in_name, in_name, in_name);
      } else {
        const auto in_template = input.duplicable()
                                     ? INPUT_LIST_INITIALIZER_TEMPLATE
                                     : INPUT_INITIALIZER_TEMPLATE;
        ins_initializer +=
            paddle::string::Sprintf(in_template, in_name, in_name);
        ins_initializer += ",";
      }
    }
    if (ins_initializer.back() == ',') {
      ins_initializer.pop_back();
    }
    ins_initializer += "}";

    if (input_args.back() == ',') {
      input_args.pop_back();
    }
224 225 226

    // Generate outs initializer
    std::string outs_initializer = "{";
L
Leo Chen 已提交
227
    std::string outs_initializer_with_null = "";
228 229
    std::string return_type = "";
    std::string return_str = "";
230

231
    int outs_num = 0;
232
    for (auto& output : op_proto->outputs()) {
L
Leo Chen 已提交
233 234 235
      auto& out_name = output.name();
      // skip those dispensable oututs
      if (output.dispensable() && !FindOutsMap(op_type, out_name)) {
236 237 238 239 240
        continue;
      }
      const auto out_type = output.duplicable() ? VAR_LIST_TYPE : VAR_TYPE;
      const auto return_template =
          output.duplicable() ? RETURN_LIST_TEMPLATE : RETURN_TEMPLATE;
L
Leo Chen 已提交
241
      if (FindPassingOutsMap(op_type, out_name)) {
242 243 244 245 246
        if (input_args != "") {
          input_args += ",";
        }
        input_args += out_type;
        input_args += out_name;
L
Leo Chen 已提交
247 248 249 250 251

        if (output.dispensable()) {
          const auto out_template =
              output.duplicable() ? OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL_LIST
                                  : OUTPUT_INITIALIZER_TEMPLATE_WITH_NULL;
252 253
          outs_initializer_with_null +=
              paddle::string::Sprintf(out_template, out_name, out_name);
L
Leo Chen 已提交
254 255 256 257 258 259 260 261
        } else {
          const auto out_template = output.duplicable()
                                        ? INPUT_LIST_INITIALIZER_TEMPLATE
                                        : INPUT_INITIALIZER_TEMPLATE;
          outs_initializer +=
              paddle::string::Sprintf(out_template, out_name, out_name);
          outs_initializer += ",";
        }
262 263 264 265 266 267 268 269 270 271 272
      } else {
        // There are few Operators that have duplicable output, like `Out` in
        // split op. We need to specify the number of variables for the
        // duplicable output, as the argument OutNum;
        if (output.duplicable()) {
          if (input_args != "") {
            input_args += ",";
          }
          auto out_num_str = paddle::string::Sprintf(ARG_OUT_NUM, out_name);
          input_args += ARG_OUT_NUM_TYPE;
          input_args += out_num_str;
L
Leo Chen 已提交
273
          outs_initializer += paddle::string::Sprintf(
274 275
              OUT_DUPLICABLE_INITIALIZER_TEMPLATE, out_name, out_num_str);
        } else {
L
Leo Chen 已提交
276
          outs_initializer +=
277 278
              paddle::string::Sprintf(OUT_INITIALIZER_TEMPLATE, out_name);
        }
L
Leo Chen 已提交
279
        outs_initializer += ",";
280 281 282 283 284 285 286
      }

      return_type += out_type;
      return_type += ",";
      return_str += paddle::string::Sprintf(return_template, out_name);
      return_str += ",";
      outs_num += 1;
287 288 289
    }
    if (outs_initializer.back() == ',') {
      outs_initializer.pop_back();
290 291
      return_type.pop_back();
      return_str.pop_back();
292 293
    }
    outs_initializer += "}";
294 295 296 297 298 299 300 301 302
    if (outs_num == 0) {
      return_type = "void";
    }
    if (outs_num > 1) {
      return_str = paddle::string::Sprintf(RETURN_TUPLE_TEMPLATE, return_str);
      return_type = paddle::string::Sprintf(RETURN_TUPLE_TYPE, return_type);
    }
    std::string function_args = "";
    if (input_args == "") {
303
      function_args = FUNCTION_ARGS_NO_INPUT;
304 305 306
    } else {
      function_args = paddle::string::Sprintf(FUNCTION_ARGS, input_args);
    }
307

308
    std::string func_name = "imperative_" + op_type;
309
    // generate op funtcion body
310
    auto op_function_str = paddle::string::Sprintf(
311
        OP_FUNCTION_TEMPLATE, return_type, func_name, function_args,
L
Leo Chen 已提交
312 313
        outs_initializer, ins_initializer,
        ins_initializer_with_null + outs_initializer_with_null, op_type,
314
        return_str);
315 316

    // generate pybind item
317 318 319 320 321
    auto bind_function_str = paddle::string::Sprintf(
        PYBIND_ITEM_TEMPLATE, module_name, op_type, func_name);

    op_function_list.emplace_back(std::move(op_function_str));
    bind_function_list.emplace_back(std::move(bind_function_str));
322
  }
323
  return std::make_tuple(op_function_list, bind_function_list);
324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341
}

int main(int argc, char* argv[]) {
  if (argc != 2) {
    std::cerr << "argc must be 2" << std::endl;
    return -1;
  }

  std::vector<std::string> headers{"\"paddle/fluid/imperative/tracer.h\""};

  std::ofstream out(argv[1], std::ios::out);

  out << "#pragma once\n\n";

  for (auto& header : headers) {
    out << "#include  " + header + "\n";
  }

342 343
  auto op_funcs = GenerateOpFunctions("m");

344 345 346
  out << "namespace py = pybind11;"
      << "\n";
  out << "namespace paddle {\n"
347 348 349
      << "namespace pybind {\n";
  out << paddle::string::join_strings(std::get<0>(op_funcs), '\n');
  out << "\n\n";
350

351 352
  out << "inline void BindOpFunctions(pybind11::module *module) {\n"
      << "  auto m = module->def_submodule(\"ops\");\n\n";
353

354 355
  out << paddle::string::join_strings(std::get<1>(op_funcs), '\n');
  out << "\n";
356 357 358 359 360 361 362
  out << "}\n\n"
      << "} // namespace pybind\n"
      << "} // namespace paddle\n";

  out.close();
  return 0;
}