framework.py 72.9 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

Y
Yu Yang 已提交
17
import collections
Q
qiaolongfei 已提交
18
import contextlib
F
fengjiayi 已提交
19
import re
20
import six
X
Xin Pan 已提交
21
import sys
22

Y
Yu Yang 已提交
23
import numpy as np
Q
qiaolongfei 已提交
24

M
minqiyang 已提交
25
from .. import compat as cpt
26
from .proto import framework_pb2
27 28
try:
    from . import core
29
except ImportError as e:
30 31 32 33
    raise ImportError(
        """NOTE: You may need to run \"export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH\"
    if you encounters \"libmkldnn.so not found\" errors. If you have python
    installed in other directory, replace \"/usr/local/lib\" with your own
M
minqiyang 已提交
34
    directory. The original error is: \n""" + cpt.get_exception_message(e))
35
except Exception as e:
36
    raise e
37
from . import unique_name
Y
Yu Yang 已提交
38

39
__all__ = [
40 41 42 43
    'Program',
    'default_startup_program',
    'default_main_program',
    'program_guard',
44
    'name_scope',
45
]
Y
Yu Yang 已提交
46

Q
qiaolongfei 已提交
47 48 49 50
EMPTY_VAR_NAME = core.kEmptyVarName()
TEMP_VAR_NAME = core.kTempVarName()
GRAD_VAR_SUFFIX = core.kGradVarSuffix()
ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
W
Wu Yi 已提交
51 52
CONTROL_DEP_VAR_PREFIX = core.kControlDepVarName()

X
Xin Pan 已提交
53 54 55 56 57 58 59 60 61 62
_imperative_tracer_ = None


def _in_imperative_mode():
    return _imperative_tracer_ is not None


def _imperative_tracer():
    return _imperative_tracer_

W
Wu Yi 已提交
63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
class NameScope(object):
    def __init__(self, name="", parent=None):
        self._children = dict()
        self._name = name
        self._parent = parent

    def child(self, prefix):
        if prefix not in self._children:
            new_child = NameScope(prefix, self)
            self._children[prefix] = [new_child]
        else:
            new_child = NameScope(prefix + "_%d" % len(self._children[prefix]),
                                  self)
            self._children[prefix].append(new_child)
        return new_child

    def parent(self):
        return self._parent

    def name(self):
        return self._name


_name_scope = NameScope()


@contextlib.contextmanager
def name_scope(prefix=None):
    """
    Generate hierarchical name prefix for the operators.

    Note: This should only used for debugging and visualization purpose.
    Don't use it for serious analysis such as graph/program transformations.

    Args:
        prefix(str): prefix.

    Examples:
        .. code-block:: python
          with name_scope("encoder"):
             ...
          with name_scope("decoder"):
             ...
             with name_scope("attention"):
                ...
    """
    # TODO(panyx0718): Only [0-9a-z].
    assert prefix, "namescope prefix cannot be empty."
    global _name_scope
    _name_scope = _name_scope.child(prefix)
    yield
    _name_scope = _name_scope.parent()


def _full_name_scope():
    global _name_scope
    scope = _name_scope
    name = ""
    while scope:
        name = scope.name() + "/" + name
        scope = scope.parent()
    return name


W
Wu Yi 已提交
128 129 130
def generate_control_dev_var_name():
    import random
    return CONTROL_DEP_VAR_PREFIX + "@" + str(random.random())
Q
qiaolongfei 已提交
131 132 133 134


def grad_var_name(var_name):
    """
135 136
    Returns:
        str: gradient name for a certain var name
Q
qiaolongfei 已提交
137 138 139
    """
    return var_name + GRAD_VAR_SUFFIX

Y
Yu Yang 已提交
140

141
def convert_np_dtype_to_dtype_(np_dtype):
142 143
    """
    Convert the data type in numpy to the data type in Paddle
144

145
    Args:
146
        np_dtype(np.dtype): the data type in numpy.
147

148 149
    Returns:
        core.VarDesc.VarType: the data type in Paddle.
150 151

    """
152 153
    dtype = np.dtype(np_dtype)
    if dtype == np.float32:
154
        return core.VarDesc.VarType.FP32
155
    elif dtype == np.float64:
156
        return core.VarDesc.VarType.FP64
157
    elif dtype == np.float16:
158
        return core.VarDesc.VarType.FP16
159
    elif dtype == np.int32:
160
        return core.VarDesc.VarType.INT32
161
    elif dtype == np.int16:
162
        return core.VarDesc.VarType.INT16
163
    elif dtype == np.int64:
164
        return core.VarDesc.VarType.INT64
165
    elif dtype == np.bool:
166
        return core.VarDesc.VarType.BOOL
167 168
    elif dtype == np.uint16:
        return core.VarDesc.VarType.INT16
169 170
    elif dtype == np.uint8:
        return core.VarDesc.VarType.UINT8
Q
qingqing01 已提交
171 172
    elif dtype == np.int8:
        return core.VarDesc.VarType.INT8
173
    else:
M
minqiyang 已提交
174
        raise ValueError("Not supported numpy dtype %s" % dtype)
175 176 177


def dtype_is_floating(dtype):
178 179 180
    """
    Check the data type is floating or not.
    Args:
181
        dtype(np.dtype|core.VarDesc.VarType): data type.
182 183 184 185 186
            Could be numpy format or Paddle format

    Returns(bool): True if data type is a float value

    """
187
    if not isinstance(dtype, core.VarDesc.VarType):
188 189
        dtype = convert_np_dtype_to_dtype_(dtype)

190 191 192 193
    return dtype in [
        core.VarDesc.VarType.FP16, core.VarDesc.VarType.FP32,
        core.VarDesc.VarType.FP64
    ]
194 195


Y
Yang Yang(Tony) 已提交
196
def _debug_string_(proto, throw_on_error=True):
197 198 199 200 201 202 203 204 205 206 207
    """
    Get the debug string of a protobuf message. The message could be not
    initialized.
    Args:
        proto(google.protobuf.message.Message): The protobuf message
        throw_on_error(bool): True if raise an error when the protobuf message
            is not initialized.

    Returns(str): The debug string of the protobuf message

    """
Y
Yu Yang 已提交
208
    error_fields = list()
Y
Yang Yang(Tony) 已提交
209
    if not proto.IsInitialized(error_fields) and throw_on_error:
C
caoying03 已提交
210 211
        raise ValueError("{0} are not initialized.\nThe message is {1}:\n".
                         format(error_fields, proto))
Y
Yu Yang 已提交
212 213 214
    return proto.__str__()


X
Xin Pan 已提交
215
class Variable(core.VariableBase):
216
    """
217 218 219
    In Fluid, every input and output of an operator is a variable. In most
    cases, variables are used for holding different kinds of data or training
    labels. A variable belongs to a block. All variable has its own name and
220
    two variables in different blocks could have the same name.
221

222 223
    There are many kinds of variables. Each kind of them has its own attributes
    and usages. Please reference the framework.proto for details.
224

225
    Most of a Variable's member variables can be setted to be None. It mean
226
    it is not available or will be specified later.
227 228

    Args:
229
        block(Block): The block that the variable belongs to.
230 231
        type(core.VarDesc.VarType): Variable type. Please reference the
            framework.proto for details.
232 233
        name(str|None): The name of the variable. If setted None, it will be
            generated automatically. Default: None
234
        shape(tuple|list|None): The shape of the variable. -1 means the batch size.
235
            Some kinds of variable do not contain shape, just set it to None.
236 237 238
            Default: None
        dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
            Default: None
239
        lod_level (int|None): The level of lod tensor. 0 means it is not a time
240
            series data.
241
            Default: None
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        capacity (int|None): The capacity of Channel variable. Ignored for other
            types. Default: None
        persistable (bool|None): True if the variable is persistable. A persistable
            variable will not be deleted after an iteration ending. Defaults: None.
        error_clip (BaseErrorClipAttr|None): The error clip attributes of the
            corresponding gradient variable. Default: None
        stop_gradient (bool): True if the variable will stop to calculate its
            gradients when backward. Default: False.
        is_data (bool): True if the variable is an input data. Default: False

    Notes:
        The constructor of Variable should not be invoked directly. Please
        use `Block.create_var` to create a variable.

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            new_variable = cur_block.create_var(name="X",
                                                shape=[-1, 23, 48],
                                                dtype='float32')
264 265
    """

Y
Yu Yang 已提交
266 267
    def __init__(self,
                 block,
Y
Yu Yang 已提交
268
                 type=core.VarDesc.VarType.LOD_TENSOR,
Y
Yu Yang 已提交
269 270 271 272
                 name=None,
                 shape=None,
                 dtype=None,
                 lod_level=None,
273
                 capacity=None,
Q
QI JUN 已提交
274
                 persistable=None,
F
fengjiayi 已提交
275
                 error_clip=None,
Y
Yu Yang 已提交
276
                 stop_gradient=False,
F
fengjiayi 已提交
277
                 is_data=False,
Y
Yu Yang 已提交
278
                 **kwargs):
Y
Yu Yang 已提交
279
        self.block = block
F
fengjiayi 已提交
280
        self.error_clip = error_clip
Y
Yu Yang 已提交
281 282

        if name is None:
Y
Yu Yang 已提交
283
            name = unique_name.generate('_generated_var')
D
Dong Zhihong 已提交
284
        is_new_var = False
M
minqiyang 已提交
285
        name = cpt.to_text(name)
X
Xin Pan 已提交
286
        self.desc = self.block.desc.find_var(cpt.to_bytes(name))
D
Dong Zhihong 已提交
287

X
Xin Pan 已提交
288
        if self.desc is None:
M
minqiyang 已提交
289
            self.desc = self.block.desc.var(cpt.to_bytes(name))
Y
Yu Yang 已提交
290
            is_new_var = True
Y
Yu Yang 已提交
291

Y
Yu Yang 已提交
292 293 294
        if is_new_var:
            self.desc.set_type(type)
        elif self.desc.type() != type:
X
Xin Pan 已提交
295
            # sys.stderr.write('%s vs %s\n' % (self.desc.type(), type))
Y
Yu Yang 已提交
296 297 298 299 300
            raise ValueError("Variable {0} has been created before. The "
                             "previous type is {1}; the new type is {2}. They"
                             " are not matched".format(self.name,
                                                       self.desc.type(), type))

Y
Yu Yang 已提交
301
        if shape is not None:
Y
Yu Yang 已提交
302
            if is_new_var:
303
                self.desc.set_shape(shape)
Y
Yu Yang 已提交
304 305 306 307 308 309 310 311
            else:
                old_shape = self.shape
                shape = tuple(shape)
                if shape != old_shape:
                    raise ValueError(
                        "Variable {0} has been created before. the previous "
                        "shape is {1}; the new shape is {2}. They are not "
                        "matched.".format(self.name, old_shape, shape))
Y
Yu Yang 已提交
312
        if dtype is not None:
313
            if not isinstance(dtype, core.VarDesc.VarType):
314
                dtype = convert_np_dtype_to_dtype_(dtype)
Y
Yu Yang 已提交
315
            if is_new_var:
F
fengjiayi 已提交
316
                self.desc.set_dtype(dtype)
Y
Yu Yang 已提交
317
            else:
F
fengjiayi 已提交
318
                old_dtype = self.dtype
Q
QI JUN 已提交
319
                if dtype != old_dtype:
Y
Yu Yang 已提交
320 321 322 323 324
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous data type is {1}; the new "
                                     "data type is {2}. They are not "
                                     "matched.".format(self.name, old_dtype,
                                                       dtype))
Y
Yu Yang 已提交
325 326

        if lod_level is not None:
Y
Yu Yang 已提交
327
            if is_new_var:
328
                self.desc.set_lod_level(lod_level)
Y
Yu Yang 已提交
329 330 331 332 333 334 335
            else:
                if lod_level != self.lod_level:
                    raise ValueError("Variable {0} has been created before. "
                                     "The previous lod_level is {1}; the new "
                                     "lod_level is {2}. They are not "
                                     "matched".format(self.name, self.lod_level,
                                                      lod_level))
336 337 338 339 340 341 342 343 344 345 346
        if persistable is not None:
            if is_new_var:
                self.desc.set_persistable(persistable)
            else:
                if persistable != self.persistable:
                    raise ValueError(
                        "Variable {0} has been created before."
                        "The previous persistable is {1}; the new "
                        "persistable is {2}. They are not matched".format(
                            self.name, self.persistable, persistable))

347 348 349 350 351 352 353 354
        if capacity is not None:
            if is_new_var:
                self.desc.set_capacity(capacity)
            else:
                # TODO(abhinavarora) : Compare with set capacity once,
                # get_capacity is implemented
                pass

Y
Yu Yang 已提交
355
        self.block.vars[name] = self
Y
Yu Yang 已提交
356
        self.op = None
Y
Yu Yang 已提交
357
        self.stop_gradient = stop_gradient
F
fengjiayi 已提交
358
        self.is_data = is_data
Y
Yu Yang 已提交
359

X
Xin Pan 已提交
360 361 362 363
    def numpy(self, scope):
        tensor = core.get_variable_tensor(scope, self.desc.name())
        return np.array(tensor)

364
    def __str__(self):
Y
Yang Yang(Tony) 已提交
365 366
        return self.to_string(True)

F
update  
fengjiayi 已提交
367
    def to_string(self, throw_on_error, with_details=False):
368 369 370 371
        """
        Get debug string.

        Args:
372 373
            throw_on_error(bool): True if raise an exception when self is
                not initialized.
F
update  
fengjiayi 已提交
374
            with_details(bool): more details about variables and parameters
375 376
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False;
377

378 379
        Returns:
            str: The debug string.
380
        """
F
update  
fengjiayi 已提交
381 382
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
383
        protostr = self.desc.serialize_to_string()
384
        proto = framework_pb2.VarDesc.FromString(six.binary_type(protostr))
F
update  
fengjiayi 已提交
385 386 387 388
        res_str = _debug_string_(proto, throw_on_error)
        if with_details:
            additional_attr = ("error_clip", "stop_gradient")
            for attr_name in additional_attr:
389 390
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
391
        return res_str
392 393 394

    __repr__ = __str__

W
Wu Yi 已提交
395
    def _set_desc(self, input):
396 397 398 399 400 401 402 403 404
        """
        Set the variable description.

        Args:
            input(core.VarDesc): The new VarDesc.

        Returns:
            None
        """
405 406
        self.desc = input

407 408 409 410
    @property
    def persistable(self):
        return self.desc.persistable()

Y
Yu Yang 已提交
411 412 413 414
    @persistable.setter
    def persistable(self, p):
        self.desc.set_persistable(p)

Y
Yu Yang 已提交
415 416
    @property
    def name(self):
M
minqiyang 已提交
417
        return cpt.to_text(self.desc.name())
Y
Yu Yang 已提交
418

T
typhoonzero 已提交
419 420 421 422
    @name.setter
    def name(self, new_name):
        self.desc.set_name(new_name)

Y
Yu Yang 已提交
423 424 425
    @property
    def shape(self):
        # convert to tuple, make it as same as numpy API.
426
        return tuple(self.desc.shape())
Y
Yu Yang 已提交
427 428

    @property
F
fengjiayi 已提交
429 430
    def dtype(self):
        return self.desc.dtype()
Y
Yu Yang 已提交
431 432 433

    @property
    def lod_level(self):
434
        return self.desc.lod_level()
Y
Yu Yang 已提交
435

Y
Yu Yang 已提交
436 437 438 439
    @property
    def type(self):
        return self.desc.type()

W
Wu Yi 已提交
440
    def _set_error_clip(self, error_clip):
441 442 443 444 445 446 447 448 449
        """
        Set the error_clip.

        Args:
            error_clip(BaseErrorClipAttr) : The new error_clip.

        Returns:
            None
        """
450 451
        self.error_clip = error_clip

Y
Yu Yang 已提交
452

F
fengjiayi 已提交
453 454 455
def get_all_op_protos():
    """
    Get all registered op proto from PaddlePaddle C++ end.
456

457 458
    Returns:
       list: list of OpProto.
F
fengjiayi 已提交
459 460 461 462
    """
    protostrs = core.get_all_op_protos()
    ret_values = []
    for pbstr in protostrs:
463
        op_proto = framework_pb2.OpProto.FromString(six.binary_type(pbstr))
F
fengjiayi 已提交
464 465 466 467 468
        ret_values.append(op_proto)
    return ret_values


class OpProtoHolder(object):
469 470 471 472
    """
    A global variable to hold all OpProtos from C++ as a map
    """

F
fengjiayi 已提交
473 474 475 476 477 478 479 480 481
    @classmethod
    def instance(cls):
        if not hasattr(cls, '_instance'):
            cls._instance = cls()
        return cls._instance

    def __init__(self):
        assert not hasattr(
            self.__class__,
482
            '_instance'), 'Please use `instance()` to get OpProtoHolder object!'
F
fengjiayi 已提交
483 484 485 486 487 488
        op_protos = get_all_op_protos()
        self.op_proto_map = {}
        for proto in op_protos:
            self.op_proto_map[proto.type] = proto

    def get_op_proto(self, type):
489 490 491 492 493 494 495 496
        """
        Get OpProto by a type string.
        Args:
            type(str): The type that operator registered in C++ side.

        Returns(framework_pb2.OpProto): The OpProto

        """
Y
Yu Yang 已提交
497 498
        if type not in self.op_proto_map:
            raise ValueError("Operator \"%s\" has not been registered." % type)
F
fengjiayi 已提交
499 500
        return self.op_proto_map[type]

501 502 503 504
    @staticmethod
    def generated_op_attr_names():
        return {
            core.op_proto_and_checker_maker.kOpRoleAttrName(),
S
sneaxiy 已提交
505
            core.op_proto_and_checker_maker.kOpRoleVarAttrName(),
506
            core.op_proto_and_checker_maker.kOpNameScopeAttrName()
507 508
        }

F
fengjiayi 已提交
509

Y
Yu Yang 已提交
510
class Operator(object):
511
    """
512 513 514 515 516 517 518
    In Fluid, all the operation are represented by Operator, and Operator
    is regarded as a build in an instruction of a Block. Users can use the
    build in instructions to describe their neural network.

    Args:
        block(Block): The block has the current operator.
        desc(core.OpDesc): The protobuf description of Operator.
C
chengduoZH 已提交
519
        type(str): The type of operator. Default None.
520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
        inputs(dict): The input of this Operator. it is a dictionary, for every
            element, key is the input parameter name, and value is a list of
            variables. Default None.
        outputs(dict): The output of this Operator. it is a dictionary, for
            every element, key is the input parameter name, and value is a list
            of variables. Default None.
        attrs(dict): The attributes of this Operator. it is a dictionary, for
            every element, key is attribute name, and value is the attribute value.
            The attribute type should be as same as the type registered in C++ side.
            Default None.

    Returns:
        Operator: The initialized Operator.

    Raises:
        ValueError: If the passed input, output and attrs doesn't match the
            initializing Operator's that registered in C++ side.

    Notes:
        The constructor of operator should not be invoked directly. Use
W
Wu Yi 已提交
540
        Block.append_op or Block._prepend_op instead.
541 542 543 544 545 546 547 548 549 550

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            # var1 += var2 + var3
            cur_block.append_op(type="sum",
                                inputs={"X": [var1, var2, var3]},
                                outputs={"Out": [var1]})
551
    """
552 553 554 555
    OP_WITHOUT_KERNEL_SET = {
        'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
        'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', 'recv',
        'listen_and_serv', 'parallel_do', 'save_combine', 'load_combine',
X
Xin Pan 已提交
556
        'ncclInit', 'select', 'checkpoint_notify', 'gen_nccl_id'
557
    }
558

Y
Yu Yang 已提交
559 560
    def __init__(self,
                 block,
Y
Yu Yang 已提交
561
                 desc,
Y
Yu Yang 已提交
562 563 564 565 566
                 type=None,
                 inputs=None,
                 outputs=None,
                 attrs=None):
        self.block = block
Y
Yu Yang 已提交
567
        self.desc = desc
G
gongweibao 已提交
568 569 570 571 572
        # note: not add self.attrs here:
        # https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
        op_attrs = attrs
        if op_attrs is None:
            op_attrs = dict()
Y
yuyang18 已提交
573 574 575 576
        del attrs

        op_maker = core.op_proto_and_checker_maker

G
gongweibao 已提交
577 578
        if op_maker.kOpRoleAttrName() not in op_attrs:
            op_attrs[op_maker.kOpRoleAttrName()] = self.block.program.op_role
Y
yuyang18 已提交
579 580 581

        role_var_name = op_maker.kOpRoleVarAttrName()
        if len(self.block.program.
G
gongweibao 已提交
582 583
               op_role_var) != 0 and role_var_name not in op_attrs:
            op_attrs[role_var_name] = self.block.program.op_role_var
Y
yuyang18 已提交
584

G
gongweibao 已提交
585 586
        if role_var_name in op_attrs and len(op_attrs[role_var_name]) == 0:
            del op_attrs[role_var_name]
Y
yuyang18 已提交
587

F
fengjiayi 已提交
588 589 590 591 592
        if len(self.desc.type()) != 0:
            return
        if type is None:
            raise ValueError(
                "`type` to initilized an Operator can not be None.")
F
Update  
fengjiayi 已提交
593
        self.desc.set_type(type)
F
fengjiayi 已提交
594
        proto = OpProtoHolder.instance().get_op_proto(type)
595

596 597 598
        namescope_var_name = op_maker.kOpNameScopeAttrName()
        op_attrs[namescope_var_name] = _full_name_scope()

Y
Yang Yang(Tony) 已提交
599 600
        def find_name(var_list, name):
            for var_name in var_list:
Q
Qiao Longfei 已提交
601
                if var_list[var_name] is not None and var_name == name:
Y
Yang Yang(Tony) 已提交
602 603
                    return True
            return False
Q
QI JUN 已提交
604

Y
Yang Yang(Tony) 已提交
605 606 607 608 609 610 611
        if inputs is not None:
            for in_proto in proto.inputs:
                found = find_name(inputs, in_proto.name)
                assert found or in_proto.dispensable, "Input {} not found".format(
                    in_proto.name)

                if found:
612 613 614 615
                    in_args = inputs[in_proto.name]
                    if not isinstance(in_args, list):
                        in_args = [in_args]
                    if not in_proto.duplicable and len(in_args) > 1:
Y
Yang Yang(Tony) 已提交
616 617
                        raise ValueError(
                            "Input %s expects only one input, but %d are given."
618 619 620
                            % (in_proto.name, len(in_args)))
                    in_arg_names = []
                    for arg in in_args:
621
                        if isinstance(arg, six.string_types):
Y
Yang Yu 已提交
622
                            in_arg_names.append(arg)
623 624
                        elif isinstance(arg, six.binary_type):
                            in_arg_names.append(arg.decode())
Y
Yang Yu 已提交
625
                        else:
M
minqiyang 已提交
626
                            in_arg_names.append(cpt.to_text(arg.name))
627
                    self.desc.set_input(in_proto.name, in_arg_names)
Y
Yang Yang(Tony) 已提交
628 629
                else:
                    self.desc.set_input(in_proto.name, [])
F
Update  
fengjiayi 已提交
630

Y
Yu Yang 已提交
631
        if outputs is not None:
632 633 634 635 636 637 638
            given = set()
            need = set()
            for n in outputs:
                given.add(n)
            for m in proto.outputs:
                need.add(m.name)
            if not given == need:
C
caoying03 已提交
639 640
                raise ValueError(("Incorrect setting for output(s) of "
                                  "operator \"%s\". Need: [%s] Given: [%s]") %
641 642 643
                                 (type,
                                  ", ".join(six.binary_type(e) for e in need),
                                  ", ".join(six.binary_type(e) for e in given)))
644

F
fengjiayi 已提交
645
            for out_proto in proto.outputs:
646 647 648 649
                out_args = outputs[out_proto.name]
                if not isinstance(out_args, list):
                    out_args = [out_args]
                if not out_proto.duplicable and len(out_args) > 1:
F
Update  
fengjiayi 已提交
650 651
                    raise ValueError(
                        "Output %s expects only one output, but %d are given." %
652 653 654
                        (out_proto.name, len(out_args)))
                out_arg_names = []
                for arg in out_args:
M
minqiyang 已提交
655
                    out_arg_names.append(cpt.to_text(arg.name))
656 657
                    arg.op = self
                self.desc.set_output(out_proto.name, out_arg_names)
F
Update  
fengjiayi 已提交
658

G
gongweibao 已提交
659 660
        if op_attrs is not None:
            if not isinstance(op_attrs, dict):
661
                raise TypeError("'attrs' should be a dict.")
F
fengjiayi 已提交
662
            for attr in proto.attrs:
F
Update  
fengjiayi 已提交
663
                attr_name = attr.name
G
gongweibao 已提交
664
                if (attr_name not in op_attrs) or (op_attrs[attr_name] is None):
F
Update  
fengjiayi 已提交
665
                    continue
G
gongweibao 已提交
666
                attr_val = op_attrs[attr_name]
G
gongweibao 已提交
667 668
                self._update_desc_attr(attr_name, attr_val)

669
        self.desc.check_attrs()
W
Wu Yi 已提交
670
        if self._has_kernel(type):
Q
QI JUN 已提交
671
            self.desc.infer_var_type(self.block.desc)
Y
Yu Yang 已提交
672
            self.desc.infer_shape(self.block.desc)
F
fengjiayi 已提交
673

W
Wu Yi 已提交
674
    def _has_kernel(self, op_type):
675 676
        return op_type not in self.OP_WITHOUT_KERNEL_SET

Y
Yang Yang(Tony) 已提交
677
    def to_string(self, throw_on_error):
678
        """
679 680
        Get debug string.

681
        Args:
682 683
            throw_on_error(bool): Whether to raise exception if self is not
                initialized.
684

685 686
        Returns:
            str: The debug string.
687 688

        """
689
        protostr = self.desc.serialize_to_string()
690
        proto = framework_pb2.OpDesc.FromString(six.binary_type(protostr))
Y
Yang Yang(Tony) 已提交
691 692 693 694
        return _debug_string_(proto, throw_on_error)

    def __str__(self):
        return self.to_string(True)
695 696 697

    __repr__ = __str__

F
fengjiayi 已提交
698 699 700 701 702
    @property
    def type(self):
        return self.desc.type()

    def input(self, name):
703
        """
704
        Get the input arguments according to the input parameter name.
705

706 707
        Args:
            name(str): The input parameter name.
708

709 710 711
        Returns:
            list: return the list of argument names that associated with \
                the specific parameter name.
712
        """
F
fengjiayi 已提交
713 714
        return self.desc.input(name)

W
Wu Yi 已提交
715
    def _rename_input(self, old_name, new_name):
716 717 718 719 720 721 722 723 724 725
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's input.
            new_name(str): The new name of the Operator's input.

        Returns:
            None
        """
W
Wu Yi 已提交
726
        self.desc._rename_input(old_name, new_name)
T
typhoonzero 已提交
727

W
Wu Yi 已提交
728
    def _rename_output(self, old_name, new_name):
729 730 731 732 733 734 735 736 737 738
        """
        Rename the `old_name` to `new_name`.

        Args:
            old_name(str): The old name of the Operator's output.
            new_name(str): The new name of the Operator's output.

        Returns:
            None
        """
W
Wu Yi 已提交
739
        self.desc._rename_output(old_name, new_name)
T
typhoonzero 已提交
740

F
fengjiayi 已提交
741 742 743 744
    @property
    def input_names(self):
        return self.desc.input_names()

T
typhoonzero 已提交
745 746 747 748 749 750 751 752
    @property
    def input_arg_names(self):
        return self.desc.input_arg_names()

    @property
    def output_arg_names(self):
        return self.desc.output_arg_names()

F
fengjiayi 已提交
753
    def output(self, name):
754
        """
755
        Get output arguments by the output parameter name.
756

757 758
        Args:
            name(str): The output parameter name.
759

760 761 762
        Returns:
            list: return the list of argument names associated with \
                the specific parameter name.
763
        """
F
fengjiayi 已提交
764 765 766 767 768 769
        return self.desc.output(name)

    @property
    def output_names(self):
        return self.desc.output_names()

770 771 772 773 774 775 776 777
    @property
    def idx(self):
        for i, op in enumerate(self.block.ops):
            if op == self:
                return i
        raise ValueError(
            "Can't find op itself in it's block. It could be a bug of Paddle.")

F
fengjiayi 已提交
778
    def has_attr(self, name):
779
        """
780 781
        Whether this Operator has the attribute with name or not.

782
        Args:
783
            name(str): the attribute name.
784

785 786
        Returns:
            bool: True if has this attribute.
787 788

        """
F
fengjiayi 已提交
789 790 791
        return self.desc.has_attr(name)

    def attr_type(self, name):
792
        """
793
        Get the type of attribute by attribute's name.
794

795 796
        Args:
            name(str): the attribute name.
797

798 799
        Returns:
            core.AttrType: the attribute type.
800
        """
F
fengjiayi 已提交
801 802
        return self.desc.attr_type(name)

W
Wu Yi 已提交
803
    def _set_attr(self, name, val):
804 805 806 807 808 809 810 811 812 813
        """
        Set the value of attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
G
gongweibao 已提交
814 815 816 817 818 819 820 821 822 823 824 825 826
        self._update_desc_attr(name, val)

    def _update_desc_attr(self, name, val):
        """
        Update the value of desc's attribute by attribute's name.

        Args:
            name(str): the attribute name.
            val(bool|int|str|float|list): the value of the attribute.

        Raises:
            ValueError: If the type of value doesn't match with desc.attr_type(name).
        """
Q
Qiyang Min 已提交
827 828
        if isinstance(val, Block):
            self.desc.set_block_attr(name, val.desc)
Y
Yancey1989 已提交
829 830
        elif isinstance(val, list) and val and all(
                isinstance(v, Block) for v in val):
831
            self.desc.set_blocks_attr(name, [v.desc for v in val])
Q
Qiyang Min 已提交
832 833 834 835
        elif isinstance(val, core.BlockDesc) or \
                isinstance(val, core.ProgramDesc):
            self.desc.set_serialized_attr(name, val.serialize_to_string())
        else:
W
Wu Yi 已提交
836
            self.desc._set_attr(name, val)
Y
yuyang18 已提交
837

F
fengjiayi 已提交
838 839 840 841 842
    @property
    def attr_names(self):
        return self.desc.attr_names()

    def attr(self, name):
843
        """
844 845
        Get the attribute by name.

846
        Args:
847
            name(str): the attribute name.
848

849 850
        Returns:
            bool|int|str|float|list: The attribute value. The return value
851 852
            can be any valid attribute type.
        """
F
fengjiayi 已提交
853
        return self.desc.attr(name)
Y
Yu Yang 已提交
854

W
Wu Yi 已提交
855
    def _block_attr_id(self, name):
856
        """
G
gongweibao 已提交
857
        Get the block attribute's id by name.
858

859 860
        Args:
            name(str): the attribute name.
861

862 863
        Returns:
            int: the block index.
864
        """
W
Wu Yi 已提交
865
        return self.desc._block_attr_id(name)
G
gongweibao 已提交
866

W
Wu Yi 已提交
867
    def _block_attr(self, name):
G
gongweibao 已提交
868 869 870 871 872 873 874 875 876 877
        """
        Get the block attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            block: the block attribute.
        """

W
Wu Yi 已提交
878
        id = self._block_attr_id(name)
G
gongweibao 已提交
879 880 881
        assert (id >= 0 and id < len(self.block.program.blocks))
        return self.block.program.blocks[id]

W
Wu Yi 已提交
882
    def _blocks_attr(self, name):
G
gongweibao 已提交
883 884 885 886 887 888 889 890 891 892
        """
        Get the blocks attribute  by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks attribute.
        """
        attrs = []
W
Wu Yi 已提交
893
        for i in self._blocks_attr_ids(name):
G
gongweibao 已提交
894 895 896 897 898
            assert (i >= 0 and i < len(self.block.program.blocks))
            attrs.append(self.block.program.blocks[i])

        return attrs

W
Wu Yi 已提交
899
    def _blocks_attr_ids(self, name):
G
gongweibao 已提交
900 901 902 903 904 905 906 907 908 909
        """
        Get the blocks attribute's ids by name.

        Args:
            name(str): the attribute name.

        Returns:
            list: list of the blocks ids.
        """

W
Wu Yi 已提交
910
        return self.desc._blocks_attr_ids(name)
Y
Yu Yang 已提交
911

J
JiayiFeng 已提交
912
    def all_attrs(self):
F
fengjiayi 已提交
913
        """
914 915 916
        Get the attribute dict.

        Returns:
G
gongweibao 已提交
917
            dict: The Operator's attribute dict, name->attr.
F
fengjiayi 已提交
918 919 920 921
        """
        attr_names = self.attr_names
        attr_map = {}
        for n in attr_names:
G
gongweibao 已提交
922 923
            attr_type = self.desc.attr_type(n)
            if attr_type == core.AttrType.BLOCK:
W
Wu Yi 已提交
924
                attr_map[n] = self._block_attr(n)
G
gongweibao 已提交
925 926 927
                continue

            if attr_type == core.AttrType.BLOCKS:
W
Wu Yi 已提交
928
                attr_map[n] = self._blocks_attr(n)
G
gongweibao 已提交
929 930 931 932
                continue

            attr_map[n] = self.attr(n)

F
fengjiayi 已提交
933 934
        return attr_map

Y
Yu Yang 已提交
935

Y
Yu Yang 已提交
936
class Block(object):
937 938 939 940 941 942 943 944 945 946 947 948 949 950
    """
    In Fluid, a Program is consistence of multi-Block, and Block stores
    VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
    One block could have some child blocks, and child block's name scopes
    should inherit the parent's so that OpDesc in child block can reference
    a VarDesc that is stored in the parent block.
    Please reference the framework.proto for details.

    Args:
        program(Program): The Program that the Block belongs to.
        idx(int): The block's id in the Program.

    Notes:
        The constructor of Block should not be invoked directly. Please
W
Wu Yi 已提交
951
        use `Program._create_block()` to create a block.
952 953 954 955 956 957 958 959 960 961 962 963 964 965

    Examples:
        .. code-block:: python

            cur_program = Program()
            cur_block = cur_program.current_block()
            var = cur_block.create_var(name="X",
                                       shape=[-1, 23, 48],
                                       dtype='float32')
            cur_block.append_op(type="abs",
                                inputs={"X": [var]},
                                outputs={"Out": [var]})
    """

Y
Yu Yang 已提交
966
    def __init__(self, program, idx):
Y
Yu Yang 已提交
967
        self.desc = program.desc.block(idx)
968
        self.vars = collections.OrderedDict()  # var_name --> var
Q
qiaolongfei 已提交
969
        self.ops = list()  # operator list
Y
Yu Yang 已提交
970
        self.program = program
971
        self.removed_vars = collections.OrderedDict()
Y
Yu Yang 已提交
972

973
    def __str__(self):
Y
Yang Yang(Tony) 已提交
974 975
        return self.to_string(True)

F
fengjiayi 已提交
976 977
    def to_string(self, throw_on_error, with_details=False):
        """
978 979
        Get debug string.

F
fengjiayi 已提交
980 981
        Args:
            throw_on_error(bool): raise exception when self is not initialized
982
                when throw_on_error is True.
F
update  
fengjiayi 已提交
983
            with_details(bool): more details about variables and parameters
984 985
                (e.g. trainable, optimize_attr, ...) will be printed when
                with_details is True. Default False.
F
fengjiayi 已提交
986

987 988
        Returns:
            str: The debug string.
F
fengjiayi 已提交
989 990 991 992
        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
F
fengjiayi 已提交
993
            re_add_indent = re.compile(r"\n(.)")
F
fengjiayi 已提交
994 995
            res_str = "blocks {\n  idx: %d\n  parent_idx: %d" % (
                self.idx, self.parent_idx)
996
            for var in list(self.vars.values()):
F
fengjiayi 已提交
997
                res_str += "\n  vars {\n    %s  }" % re_add_indent.sub(
F
update  
fengjiayi 已提交
998
                    r"\n    \1", var.to_string(throw_on_error, with_details))
F
fengjiayi 已提交
999
            for op in self.ops:
F
fengjiayi 已提交
1000 1001
                res_str += "\n  ops {\n    %s  }" % re_add_indent.sub(
                    r"\n    \1", op.to_string(throw_on_error))
F
fengjiayi 已提交
1002 1003 1004
            res_str += "\n}"
        else:
            protostr = self.desc.serialize_to_string()
1005 1006
            proto = framework_pb2.BlockDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1007 1008
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1009 1010 1011

    __repr__ = __str__

Y
Yu Yang 已提交
1012 1013
    @property
    def parent_idx(self):
Y
Yu Yang 已提交
1014
        return self.desc.parent
Y
Yu Yang 已提交
1015

Y
Yu Yang 已提交
1016 1017 1018 1019
    @property
    def forward_block_idx(self):
        return self.desc.get_forward_block_idx()

W
Wu Yi 已提交
1020
    def _set_forward_block_idx(self, idx):
1021 1022 1023 1024 1025 1026 1027 1028 1029
        """
        Set the forward block Idx.

        Args:
            idx(int): the block index.

        Returns:
            None
        """
W
Wu Yi 已提交
1030
        self.desc._set_forward_block_idx(idx)
Y
Yu Yang 已提交
1031

Y
Yu Yang 已提交
1032 1033
    @property
    def idx(self):
Y
Yu Yang 已提交
1034
        return self.desc.id
Y
Yu Yang 已提交
1035

Q
Qiao Longfei 已提交
1036
    def var(self, name):
1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049
        """
        Get a Variable by name from this block.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: The If input's type is not str, or this block
                doesn't have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
1050
        if not isinstance(name, six.string_types):
M
minqiyang 已提交
1051 1052 1053
            raise TypeError(
                "var require string as parameter, but get %s instead." %
                (type(name)))
Y
Yu Yang 已提交
1054 1055
        v = self.vars.get(name, None)
        if v is None:
Q
Qiao Longfei 已提交
1056
            raise ValueError("var %s not in this block" % name)
Y
Yu Yang 已提交
1057
        return v
Q
Qiao Longfei 已提交
1058

W
Wu Yi 已提交
1059
    def _var_recursive(self, name):
1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072
        """
        Get a Variable by name from this block recursively.

        Args:
            name(str): the Variable's name.

        Raises:
            ValueError: this block and this parent block doesn't
                have a Variable with the giving name.

        Returns:
            Variable: the Variable with the giving name.
        """
Y
Yu Yang 已提交
1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098
        frontier = list()
        visited = set()

        frontier.append(self)

        prog = self.program

        while len(frontier) != 0:  # BFS
            cur = frontier[0]
            frontier = frontier[1:]

            if id(cur) in visited:
                continue

            if cur.has_var(name):
                return cur.var(name)

            if cur.parent_idx != -1:
                frontier.append(prog.block(cur.parent_idx))

            if cur.forward_block_idx != -1:
                frontier.append(prog.block(cur.forward_block_idx))

            visited.add(id(cur))

        raise ValueError("Var {0} is not found recursively".format(name))
F
fengjiayi 已提交
1099

Q
Qiao Longfei 已提交
1100
    def all_parameters(self):
1101
        return list(self.iter_parameters())
1102

1103
    def iter_parameters(self):
M
minqiyang 已提交
1104
        return (item[1] for item in six.iteritems(self.vars)
1105
                if isinstance(item[1], Parameter))
Q
Qiao Longfei 已提交
1106

Y
Yu Yang 已提交
1107
    def create_var(self, *args, **kwargs):
1108
        var = Variable(block=self, *args, **kwargs)
1109 1110
        if 'initializer' in kwargs:
            kwargs['initializer'](var, self)
Q
Qiao Longfei 已提交
1111
        return var
Y
Yu Yang 已提交
1112

Q
Qiao Longfei 已提交
1113 1114 1115
    def has_var(self, name):
        return name in self.vars

W
Wu Yi 已提交
1116
    def _rename_var(self, name, new_name):
T
typhoonzero 已提交
1117 1118
        """
        Rename variable in vars and ops' inputs and outputs
1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130

        Args:
            name(str): the name that need to be renamed.
            new_name(str): the name that need to rename to.

        Raises:
            ValueError: If this block doesn't have this the giving name,
                or the type of the var with the giving name is not Parameter
                or Variable.

        Returns:
            Variable: the Variable with the giving name.
T
typhoonzero 已提交
1131
        """
M
minqiyang 已提交
1132 1133
        name = cpt.to_text(name)
        new_name = cpt.to_text(new_name)
M
minqiyang 已提交
1134

T
typhoonzero 已提交
1135
        if not self.has_var(name):
1136
            raise ValueError("var %s is not in current block" % name)
T
wip  
typhoonzero 已提交
1137 1138
        v = self.var(name)
        if type(v) == Parameter:
T
typhoonzero 已提交
1139
            var_type = "Parameter"
T
wip  
typhoonzero 已提交
1140 1141 1142 1143 1144 1145 1146
            stop_gradient = v.stop_gradient
            trainable = v.trainable
            optimize_attr = v.optimize_attr
            regularizer = v.regularizer
            gradient_clip_attr = v.gradient_clip_attr
            error_clip = v.error_clip
        elif type(v) == Variable:
T
typhoonzero 已提交
1147
            var_type = "Variable"
T
wip  
typhoonzero 已提交
1148 1149 1150 1151
            error_clip = v.error_clip
            stop_gradient = v.stop_gradient
        else:
            raise ValueError("unsupported var type: %s", type(v))
T
typhoonzero 已提交
1152
        orig_var_type = v.type
M
minqiyang 已提交
1153
        self.desc._rename_var(cpt.to_bytes(name), cpt.to_bytes(new_name))
W
Wu Yi 已提交
1154
        # NOTE: v is destroyed by C++ after calling _rename_var.
M
minqiyang 已提交
1155
        d = self.desc.find_var(cpt.to_bytes(new_name))
T
typhoonzero 已提交
1156
        if var_type == "Parameter":
T
wip  
typhoonzero 已提交
1157 1158 1159 1160
            var = Parameter(
                self,
                d.shape(),
                d.dtype(),
T
typhoonzero 已提交
1161
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1162 1163 1164 1165 1166 1167 1168
                name=new_name,
                stop_gradient=stop_gradient,
                trainable=trainable,
                optimize_attr=optimize_attr,
                regularizer=regularizer,
                gradient_clip_attr=gradient_clip_attr,
                error_clip=error_clip)
T
typhoonzero 已提交
1169
        elif var_type == "Variable":
T
wip  
typhoonzero 已提交
1170 1171
            var = Variable(
                self,
T
typhoonzero 已提交
1172
                type=orig_var_type,
T
wip  
typhoonzero 已提交
1173 1174 1175 1176
                name=new_name,
                error_clip=error_clip,
                stop_gradient=stop_gradient)

W
Wu Yi 已提交
1177
        # rename the python side, _sync_with_cpp will only add
T
wip  
typhoonzero 已提交
1178 1179 1180
        # new vars/ops to python side.
        self.vars[new_name] = var
        del self.vars[name]
W
Wu Yi 已提交
1181
        self._sync_with_cpp()
1182
        return var
T
typhoonzero 已提交
1183

W
Wu Yi 已提交
1184 1185
    def _remove_var(self, name):
        self._sync_with_cpp()
M
minqiyang 已提交
1186
        self.desc._remove_var(cpt.to_bytes(name))
1187 1188
        del self.vars[name]

Y
Yu Yang 已提交
1189 1190
    def create_parameter(self, *args, **kwargs):
        global_block = self.program.global_block()
Q
Qiao Longfei 已提交
1191
        param = Parameter(global_block, *args, **kwargs)
1192
        if 'initializer' in kwargs:
1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212

            def _is_inited_by(block, var):
                init_ops = []
                for op in block.ops:
                    if var.name in op.output_arg_names:
                        init_ops.append(op)
                return init_ops

            initializer = kwargs['initializer']
            init_ops = _is_inited_by(global_block, param)
            init_ops_len = len(init_ops)
            if init_ops_len > 1:
                raise RuntimeError("param " + param.name +
                                   " is inited by multiple init ops " + str(
                                       init_ops))
            elif init_ops_len == 1:
                #TODO already inited, do nothing, should log a warning
                pass
            else:
                initializer(param, self)
Q
Qiao Longfei 已提交
1213
        return param
Y
Yu Yang 已提交
1214

Y
Yu Yang 已提交
1215
    def append_op(self, *args, **kwargs):
1216 1217 1218 1219 1220 1221
        """
        Appends a new Operator according to the giving arguments.

        Returns:
            Operator: the append Operator.
        """
X
Xin Pan 已提交
1222 1223 1224 1225 1226 1227
        if _in_imperative_mode():
            op_desc = core.OpDesc()
            op = Operator(block=self, desc=op_desc, *args, **kwargs)
            _imperative_tracer().trace(op.desc)
            return

Y
Yu Yang 已提交
1228
        op_desc = self.desc.append_op()
1229
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
Y
Yu Yang 已提交
1230 1231 1232
        self.ops.append(op)
        return op

W
Wu Yi 已提交
1233
    def _insert_op(self, index, *args, **kwargs):
1234 1235 1236 1237 1238 1239 1240 1241 1242
        """
        Insert a Operator according to the giving arguments.

        Args:
            index(int): the place that the operator to insert.

        Returns:
            Operator: the insert Operator.
        """
W
Wu Yi 已提交
1243 1244
        self._sync_with_cpp()
        op_desc = self.desc._insert_op(index)
Q
qiaolongfei 已提交
1245 1246 1247 1248
        op = Operator(block=self, desc=op_desc, *args, **kwargs)
        self.ops.insert(index, op)
        return op

W
Wu Yi 已提交
1249
    def _remove_op(self, index):
1250 1251 1252 1253 1254 1255 1256 1257 1258
        """
        Remove the specific position operator.

        Args:
            index(int): the position that the operator to insert.

        Returns:
            None
        """
W
Wu Yi 已提交
1259 1260
        self._sync_with_cpp()
        self.desc._remove_op(index, index + 1)
1261 1262
        del self.ops[index]

W
Wu Yi 已提交
1263
    def _slice_ops(self, start, end):
1264 1265 1266 1267 1268 1269 1270 1271 1272 1273
        """
        Return the Operator between start and end.

        Args:
            start(int): the start position.
            end(int): the end position.

        Returns:
            list: the Operators between start and end.
        """
Q
qiaolongfei 已提交
1274
        return self.ops[start:end]
Y
Yancey1989 已提交
1275

W
Wu Yi 已提交
1276 1277
    def _prepend_op(self, *args, **kwargs):
        op_desc = self.desc._prepend_op()
Y
Yu Yang 已提交
1278
        op = Operator(self, op_desc, *args, **kwargs)
Q
qiaolongfei 已提交
1279
        self.ops.insert(0, op)
Y
Yu Yang 已提交
1280 1281
        return op

W
Wu Yi 已提交
1282
    def _sync_with_cpp(self):
1283
        """
1284 1285
        Sync from the desc on the c++ end. This method is used to synchronize
        the c++ desc instance generated by backward.
1286
        """
Q
Qiao Longfei 已提交
1287 1288 1289 1290 1291
        # sync variables from cpp
        for var in self.desc.all_vars():
            if not self.has_var(var.name()):
                self.create_var(name=var.name(), desc=var, type=var.type())

1292
        # sync variables removed from c++ end
1293
        for var in list(self.vars.keys()):
M
minqiyang 已提交
1294
            if not self.desc.find_var(cpt.to_bytes(var)):
1295 1296
                self.vars.pop(var)

Q
Qiao Longfei 已提交
1297
        # sync operators from cpp
1298 1299 1300 1301
        ops_in_cpp = []
        for op_idx in range(0, self.desc.op_size()):
            ops_in_cpp.append(self.desc.op(op_idx))

Y
Yu Yang 已提交
1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317
        if len(self.ops) != 0:
            first_op_in_python = self.ops[0].desc
            last_op_in_python = self.ops[len(self.ops) - 1].desc
            start_index = None
            end_index = None
            for index in range(len(ops_in_cpp)):
                if first_op_in_python == ops_in_cpp[index]:
                    start_index = index
                if last_op_in_python == ops_in_cpp[index]:
                    end_index = index
            assert start_index is not None
            assert end_index is not None
            assert start_index <= end_index
        else:
            start_index = 0
            end_index = -1
Q
Qiao Longfei 已提交
1318 1319 1320 1321 1322

        # sync ops append to the head of cpp_ops
        for index in range((start_index - 1 - 1), -1, -1):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
Q
qiaolongfei 已提交
1323
            self.ops.insert(0, op)
Q
Qiao Longfei 已提交
1324 1325 1326 1327 1328 1329 1330

        # sync ops append to the end of cpp_ops
        for index in range((end_index + 1), len(ops_in_cpp)):
            op_desc = ops_in_cpp[index]
            op = Operator(self, op_desc)
            self.ops.append(op)

1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343
        # sync ops removed from c++ end
        if end_index != -1 and end_index < len(self.ops):
            ops_in_cpp_index = 0
            ops_in_python_index = 0
            while ops_in_python_index < len(
                    self.ops) and ops_in_cpp_index < len(ops_in_cpp):
                if self.ops[ops_in_python_index].desc != ops_in_cpp[
                        ops_in_cpp_index]:
                    del self.ops[ops_in_python_index]
                else:
                    ops_in_cpp_index += 1
                    ops_in_python_index += 1

Q
Qiao Longfei 已提交
1344 1345 1346 1347
        assert len(self.ops) == len(ops_in_cpp)
        for index in range(len(self.ops)):
            assert self.ops[index].desc == ops_in_cpp[index]

W
Wu Yi 已提交
1348
    def _copy_param_info_from(self, other):
1349
        """
1350 1351
        Copy the information of parameters from the other block.

1352
        Args:
1353 1354 1355 1356 1357
            other(Block): the other block.

        Raises:
            ValueError: If type of input is not Block, or the `other` and this
                block is not in the same topology.
1358 1359 1360 1361 1362

        Returns:
            None
        """
        if not isinstance(other, Block):
W
Wu Yi 已提交
1363 1364
            raise TypeError(
                "_copy_param_info_from should be invoked with Block")
1365
        for p in other.iter_parameters():
1366 1367 1368
            assert isinstance(p, Parameter)
            v = self.vars.get(p.name, None)
            if v is None:
W
Wu Yi 已提交
1369
                raise ValueError("_copy_param_info_from should be invoked with "
1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381
                                 "same topology")
            assert isinstance(v, Variable)
            new_p = Parameter(
                block=self,
                shape=v.shape,
                dtype=v.dtype,
                type=v.type,
                lod_level=v.lod_level,
                stop_gradient=p.stop_gradient,
                trainable=p.trainable,
                optimize_attr=p.optimize_attr,
                regularizer=p.regularizer,
F
fengjiayi 已提交
1382
                gradient_clip_attr=p.gradient_clip_attr,
F
fengjiayi 已提交
1383
                error_clip=p.error_clip,
1384 1385 1386
                name=v.name)
            self.vars[new_p.name] = new_p

W
Wu Yi 已提交
1387
    def _clone_variable(self, var):
1388 1389
        """
        Clone a variable into current block.
1390

1391 1392 1393 1394
        Args:
            var: the variable to be cloned.

        Returns:
1395
            Variable: the new  variable cloned from 'var' in current block.
1396 1397
        """
        assert isinstance(var, Variable)
T
update  
typhoonzero 已提交
1398 1399 1400 1401 1402
        ret_var = None
        # make STEP_SCOPES var can be safely cloned.
        if var.type == core.VarDesc.VarType.STEP_SCOPES:
            ret_var = self.create_var(
                name=var.name, persistable=var.persistable, type=var.type)
T
tangwei12 已提交
1403 1404
        elif var.type == core.VarDesc.VarType.RAW:
            ret_var = self.create_var(
T
tangwei12 已提交
1405
                name=var.name, persistable=var.persistable, type=var.type)
T
typhoonzero 已提交
1406 1407 1408 1409 1410 1411
        elif var.type == core.VarDesc.VarType.SELECTED_ROWS:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
F
fengjiayi 已提交
1412 1413
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1414 1415 1416 1417 1418 1419 1420
        else:
            ret_var = self.create_var(
                name=var.name,
                shape=var.shape,
                dtype=var.dtype,
                type=var.type,
                lod_level=var.lod_level,
F
fengjiayi 已提交
1421 1422
                persistable=True,
                is_data=var.is_data)
T
update  
typhoonzero 已提交
1423
        return ret_var
1424

Y
Yu Yang 已提交
1425 1426

class Program(object):
D
dzhwinter 已提交
1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437
    """
    Python Program. Beneath it is a ProgramDesc, which is used for
    create c++ Program. A program is a self-contained programing
    language like container. It has at least one Block, when the
    control flow op like conditional_block, while_op is included,
    it will contains nested block.
    Please reference the framework.proto for details.

    Notes: we have default_startup_program and default_main_program
    by default, a pair of them will shared the parameters.
    The default_startup_program only run once to initialize parameters,
Y
yuyang18 已提交
1438
    default_main_program run in every mini batch and adjust the weights.
D
dzhwinter 已提交
1439 1440

    Returns:
Y
yuyang18 已提交
1441
        A empty program.
D
dzhwinter 已提交
1442 1443

    Examples:
Y
yuyang18 已提交
1444 1445 1446 1447 1448 1449
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program=main_program, startup_program=startup_program):
        >>>     fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
        >>>     fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
        >>>     fluid.layers.fc(name="fc", shape=[10], dtype='float32', act="relu")
D
dzhwinter 已提交
1450 1451 1452

    """

1453 1454
    def __init__(self):
        self.desc = core.ProgramDesc()
Y
Yu Yang 已提交
1455 1456
        self.blocks = [Block(self, 0)]
        self.current_block_idx = 0
D
dzhwinter 已提交
1457
        self._seed = 0
Y
yuyang18 已提交
1458
        self._current_role = core.op_proto_and_checker_maker.OpRole.Forward
Y
yuyang18 已提交
1459
        self._op_role_var = []
T
tangwei12 已提交
1460 1461 1462 1463

        # for distribute
        self._is_distributed = False
        self._is_chief = False
T
tangwei12 已提交
1464
        self._slice_vars_and_attrs = []
T
tangwei12 已提交
1465 1466
        self._endpoints = []
        self._distributed_lookup_table = None
Y
yuyang18 已提交
1467 1468 1469

    @property
    def op_role(self):
Y
yuyang18 已提交
1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482
        """
        The operator role. In a enum {Forward, Backward, Optimize}.

        Notes: this is a low level API. It is used only for ParallelExecutor to
        duplicate or schedule operator to devices.

        For example, the forward operator should be executed on every device.
        The backward operator should be executed on every device and the
        parameter gradient of backward (use :code:`op_role_var` to get this
        variable) operator should be merged to one device. The optimization
        operators should be executed on only one device and broadcast the
        optimization result, i.e., the new parameter, to every other device.
        """
Y
yuyang18 已提交
1483 1484 1485 1486 1487 1488 1489 1490
        return self._current_role

    @op_role.setter
    def set_op_role(self, role):
        self._current_role = role

    @property
    def op_role_var(self):
Y
yuyang18 已提交
1491 1492 1493 1494 1495 1496 1497
        """
        The auxiliary variables for :code:`op_role` property.

        See Also: :code:`Program.op_role`'s documentation for details.

        Notes: This is a very low-level API. Users should not use it directly.
        """
Y
yuyang18 已提交
1498 1499 1500 1501
        return self._op_role_var

    @op_role_var.setter
    def set_op_role_var(self, var_name):
Y
yuyang18 已提交
1502
        self._op_role_var = [var_name]
Y
yuyang18 已提交
1503 1504

    @contextlib.contextmanager
W
Wu Yi 已提交
1505
    def _optimized_guard(self, param_and_grads):
Y
yuyang18 已提交
1506 1507 1508 1509 1510 1511 1512
        """
        A with guard to set :code:`Optimization` :code:`OpRole` and
        :code:`OpRoleVar` automatically.

        Notes: This is a very low level API. Users should not use it directly.

        Args:
1513
            param_and_grads(list): The variables (names) to be optimized.
Y
yuyang18 已提交
1514 1515 1516 1517

        Examples:

            >>> p, g = backward(...)
W
Wu Yi 已提交
1518
            >>> with program._optimized_guard([p,g]):
Y
yuyang18 已提交
1519 1520
            >>>     p = p - 0.001 * g
        """
X
Xin Pan 已提交
1521 1522 1523
        tmp_role = self._current_role
        tmp_var = self._op_role_var

Y
yuyang18 已提交
1524 1525
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.Optimize
1526 1527 1528 1529
        self._op_role_var = [
            var.name if isinstance(var, Variable) else var
            for var in param_and_grads
        ]
Y
yuyang18 已提交
1530
        yield
X
Xin Pan 已提交
1531 1532
        self._op_role_var = tmp_var
        self._current_role = tmp_role
Y
Yu Yang 已提交
1533

1534
    @contextlib.contextmanager
X
Xin Pan 已提交
1535
    def _lr_schedule_guard(self, is_with_opt=False):
1536 1537 1538 1539 1540 1541 1542
        """
        A with guard to set :code:`LRSched` :code:`OpRole` and
        :code:`OpRoleVar` automatically. The :code:`OpRoleVar` is
        set to the target learning rate.

        Notes: This is a very low level API. Users should not use it directly.

X
Xin Pan 已提交
1543 1544 1545 1546
        Args:
            is_with_opt: Only set to true if these ops a in the middle
                 of a bunch of optimize ops so that it can be treated
                 correctly. For example, sgd->lr_op->sgd->lr_op->sgd.
1547 1548 1549 1550 1551 1552 1553

        Examples:

            >>> p, g = backward(...)
            >>> with program.lr_schedule_guard():
            >>>     lr = lr * decay
        """
1554 1555 1556 1557

        tmp_role = self._current_role
        tmp_var = self._op_role_var

1558 1559
        OpRole = core.op_proto_and_checker_maker.OpRole
        self._current_role = OpRole.LRSched
X
Xin Pan 已提交
1560 1561
        if is_with_opt:
            self._current_role = int(OpRole.LRSched) | int(OpRole.Optimize)
1562 1563 1564
        # TODO(typhoonzero): how to set target learning rate var
        self._op_role_var = []
        yield
1565 1566
        self._op_role_var = tmp_var
        self._current_role = tmp_role
1567

1568
    def __str__(self):
Y
yuyang18 已提交
1569 1570 1571 1572 1573 1574 1575 1576 1577
        """
        Get the protobuf debug string of this Program.

        Returns:
            (str): The protobuf debug string.

        Raises:
            ValueError: If any of required fields is not set.
        """
Y
Yang Yang(Tony) 已提交
1578 1579
        return self.to_string(True)

F
fengjiayi 已提交
1580 1581 1582
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
Y
yuyang18 已提交
1583

F
fengjiayi 已提交
1584
        Args:
Y
yuyang18 已提交
1585 1586
            throw_on_error(bool): raise Value error when any of required fields
                is not set.
F
fengjiayi 已提交
1587

Y
yuyang18 已提交
1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
            with_details(bool): True if more details about variables and
                parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
                to print.

        Returns
            (str): The debug string.

        Raises:
            ValueError: If any of required fields is not set and throw_on_error is
                True.
F
fengjiayi 已提交
1598 1599 1600 1601 1602 1603 1604 1605 1606 1607

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = ""
            for block in self.blocks:
                res_str += block.to_string(throw_on_error, with_details)
        else:
            protostr = self.desc.serialize_to_string()
1608 1609
            proto = framework_pb2.ProgramDesc.FromString(
                six.binary_type(protostr))
F
fengjiayi 已提交
1610 1611
            res_str = _debug_string_(proto, throw_on_error)
        return res_str
1612

W
Wu Yi 已提交
1613
    def _get_desc(self):
Y
yuyang18 已提交
1614 1615 1616 1617 1618 1619 1620
        """
        Get the C++ side of `ProgramDesc` object pointer. The C++ object is
        exposed by :code:`pybind`.

        Notes: This is a very low level API. Users should not use this API
        directly.
        """
1621 1622
        return self.desc

X
version  
Xin Pan 已提交
1623 1624 1625
    def _version(self):
        return self.desc._version()

1626
    def clone(self, for_test=False):
Y
yuyang18 已提交
1627 1628 1629
        """
        Create a new, duplicated program.

1630

Y
yuyang18 已提交
1631 1632 1633 1634
        Some operators, e.g., :code:`batch_norm`, behave differently between
        training and testing. They have an attribute, :code:`is_test`, to
        control this behaviour. This method will change the :code:`is_test`
        attribute of them to :code:`True` when :code:`for_test=True`.
1635

Y
yuyang18 已提交
1636 1637 1638 1639
        * Set for_test to False when we want to clone the program for training.
        * Set for_test to True when we want to clone the program for testing.

        Notes: This API DOES NOT prune any operator. Use
L
Luo Tao 已提交
1640 1641 1642 1643 1644
        :code:`clone(for_test=True)` before backward and optimization please. e.g.

            >>> test_program = fluid.default_main_program().clone(for_test=True)
            >>> optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
            >>> optimizer.minimize()
1645 1646

        Args:
Y
yuyang18 已提交
1647 1648
            for_test(bool): True if change the :code:`is_test` attribute of
                operators to :code:`True`.
1649

D
dzhwinter 已提交
1650
        Returns:
Y
yuyang18 已提交
1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703
            Program: The new, duplicated Program object.

        Examples:

            1. To clone a test program, the sample code is:

            >>> import paddle.fluid as fluid
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>
            >>> test_program = train_program.clone(for_test=True)
            >>>
            >>> sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     sgd.minimize(loss)

            2. The :code:`clone` method can be avoid if you create program for
            training and program for testing individually.

            >>> import paddle.fluid as fluid
            >>>
            >>> def network(is_test):
            >>>     img = fluid.layers.data(name='image', shape=[784])
            >>>     hidden = fluid.layers.fc(input=img, size=200, act='relu')
            >>>     hidden = fluid.layers.dropout(hidden, dropout_prob=0.5, is_test=is_test)
            >>>     loss = fluid.layers.cross_entropy(
            >>>                 input=fluid.layers.fc(hidden, size=10, act='softmax'),
            >>>                 label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
            >>>     return loss
            >>>
            >>> train_program = fluid.Program()
            >>> startup_program = fluid.Program()
            >>> test_program = fluid.Program()
            >>>
            >>> with fluid.program_guard(train_program, startup_program):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=False)
            >>>         sgd = fluid.optimizer.SGD(learning_rate=1e-3)
            >>>         sgd.minimize(loss)
            >>>
            >>> # the test startup program is not used.
            >>> with fluid.program_guard(test_program, fluid.Program()):
            >>>     with fluid.unique_name.guard():
            >>>         loss = network(is_test=True)

            The two code snippets above will generate same programs.
1704 1705
        """
        if for_test:
X
Xin Pan 已提交
1706
            p = self._inference_optimize(prune_read_op=False)
1707
        else:
1708
            p = Program()
G
gongweibao 已提交
1709 1710
            p.current_block_idx = self.current_block_idx
            p._seed = self._seed
1711
            p.desc = core.ProgramDesc(self.desc)
M
minqiyang 已提交
1712 1713 1714
            p.blocks = [
                Block(p, i) for i in six.moves.range(self.desc.num_blocks())
            ]
G
gongweibao 已提交
1715 1716 1717 1718

            p._current_role = self._current_role
            p._op_role_var = self._op_role_var

W
Wu Yi 已提交
1719
            p._sync_with_cpp()
1720

W
Wu Yi 已提交
1721
        p._copy_param_info_from(self)
W
Wu Yi 已提交
1722
        p._copy_data_info_from(self)
1723
        p._copy_dist_param_info_from(self)
Y
Yu Yang 已提交
1724
        return p
1725

W
Wu Yi 已提交
1726
    def _prune(self, targets):
Y
yuyang18 已提交
1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741
        """
        Prune operators and variables which are not needed to generate
        :code:`targets`.

        Notes: This is a very low level API. Users should not use this API
        directly. This API is in flux and not stable.

        Args:
            targets(list|Variable|Operator): A list of variables or operators
                need to be pruned

        Returns:
            Program:  A new, pruned program.

        """
1742 1743 1744 1745 1746 1747
        if not isinstance(targets, list):
            targets = [targets]
        targets_idx = []
        for t in targets:
            if not isinstance(t, Operator):
                if isinstance(t, Variable):
1748 1749
                    # After transpiler processing, the op that output this
                    # variable maybe has been changed, so t.op is not reliable
1750
                    # and we need to find the current op that generate this
1751 1752 1753 1754 1755 1756 1757 1758
                    # variable here.
                    t.op = None
                    global_block = self.global_block()
                    for idx, op in enumerate(global_block.ops):
                        if t.name in op.output_arg_names:
                            t.op = op
                            break

1759
                    t = t.op
1760 1761 1762 1763
                    if t is None:
                        raise ValueError(
                            "The target variable must have an "
                            "associated operator that generates it.")
1764
                else:
1765 1766
                    raise ValueError("All targets of prune() can only be "
                                     "Variable or Operator.")
1767 1768 1769 1770

            targets_idx.append([t.block.idx, t.idx])
        res = Program()
        res.desc = core.prune(self.desc, targets_idx)
M
minqiyang 已提交
1771 1772 1773
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1774
        res._sync_with_cpp()
1775 1776
        return res

X
Xin Pan 已提交
1777
    def _inference_optimize(self, prune_read_op=True):
Y
yuyang18 已提交
1778
        """
F
fengjiayi 已提交
1779 1780 1781 1782 1783
        This method will create a new program and do following adjustments on it:
        1. Remove all reader variables and their creator ops if exist.

        2. Remove the :code:`read_op` if exists.

1784
        3. change the :code:`is_test`
Y
yuyang18 已提交
1785 1786 1787
        attribute of operators to :code:`True`. All the :code:`Parameter`
        information will be lost.

1788
        Args:
X
Xin Pan 已提交
1789 1790
            prune_read_op(bool): remove the read ops that are added by py_reader
                                 for cpp inference library
1791

Y
yuyang18 已提交
1792 1793 1794 1795 1796 1797
        Notes: This API is a very low level API. Use
        :code:`Program.clone(for_test=True)` instead.

        Returns:
            Program: The new program.
        """
1798
        res = Program()
1799
        res.desc = core.ProgramDesc(self.desc)
F
fengjiayi 已提交
1800 1801 1802 1803

        # remove all readers and the read_op if exist
        read_op_idx = 0
        root_block = res.desc.block(0)
X
Xin Pan 已提交
1804
        if prune_read_op:
1805 1806 1807 1808 1809 1810 1811 1812 1813
            while True:
                if read_op_idx >= root_block.op_size() or root_block.op(
                        read_op_idx).type() == 'read':
                    break
                read_op_idx += 1
            if read_op_idx < root_block.op_size():
                root_block._remove_op(0, read_op_idx + 1)
            for var in root_block.all_vars():
                if var.type() == core.VarDesc.VarType.READER:
M
minqiyang 已提交
1814
                    root_block._remove_var(cpt.to_bytes(var.name()))
F
fengjiayi 已提交
1815 1816

        # change all `is_test` attributes to True
M
minqiyang 已提交
1817
        for i in six.moves.range(res.desc.num_blocks()):
1818
            block = res.desc.block(i)
M
minqiyang 已提交
1819
            for j in six.moves.range(block.op_size()):
1820 1821
                op = block.op(j)
                if op.has_attr('is_test'):
W
Wu Yi 已提交
1822
                    op._set_attr('is_test', True)
M
minqiyang 已提交
1823 1824 1825
        res.blocks = [
            Block(res, i) for i in six.moves.range(res.desc.num_blocks())
        ]
W
Wu Yi 已提交
1826
        res._sync_with_cpp()
1827 1828
        return res

1829 1830
    @staticmethod
    def parse_from_string(binary_str):
Y
yuyang18 已提交
1831 1832 1833 1834 1835 1836 1837
        """
        Deserialize a program desc from protobuf binary string.

        Notes: All information about parameters will be lost after serialization
        and deserialization.

        Args:
1838
            binary_str_type(str): The binary prootbuf string.
Y
yuyang18 已提交
1839 1840 1841 1842

        Returns:
            Program: A deserialized program desc.
        """
1843 1844
        p = Program()
        p.desc = core.ProgramDesc(binary_str)
M
minqiyang 已提交
1845
        p.blocks = [Block(p, i) for i in six.moves.range(p.desc.num_blocks())]
W
Wu Yi 已提交
1846
        p._sync_with_cpp()
1847
        return p
Y
Yu Yang 已提交
1848

D
dzhwinter 已提交
1849 1850
    @property
    def random_seed(self):
Y
yuyang18 已提交
1851 1852 1853 1854 1855 1856
        """
        The default random seed for random operators in Program. Zero means get
        the random seed from random device.

        Notes: It must be set before the operators have been added.
        """
D
dzhwinter 已提交
1857 1858
        return self._seed

Q
qiaolongfei 已提交
1859 1860
    @property
    def num_blocks(self):
Y
yuyang18 已提交
1861 1862 1863
        """
        The number of blocks in this program.
        """
Q
qiaolongfei 已提交
1864 1865
        return self.desc.num_blocks()

D
dzhwinter 已提交
1866 1867 1868 1869 1870 1871
    @random_seed.setter
    def random_seed(self, seed):
        if not isinstance(seed, int):
            raise ValueError("Seed must be a integer.")
        self._seed = seed

Y
Yu Yang 已提交
1872
    def __repr__(self):
1873
        return self.__str__()
1874

Y
Yu Yang 已提交
1875
    def global_block(self):
Y
yuyang18 已提交
1876 1877 1878
        """
        Get the first block of this program.
        """
Y
Yu Yang 已提交
1879 1880
        return self.blocks[0]

Q
Qiao Longfei 已提交
1881
    def block(self, index):
Y
yuyang18 已提交
1882 1883 1884 1885 1886 1887 1888 1889
        """
        Get the :code:`index` block of this program
        Args:
            index(int): The index of block to get

        Returns:
            Block: The :code:`index` block
        """
Q
Qiao Longfei 已提交
1890 1891
        return self.blocks[index]

Y
Yu Yang 已提交
1892
    def current_block(self):
Y
yuyang18 已提交
1893 1894 1895 1896
        """
        Get the current block. The :code:`current` block is the block to append
        operators.
        """
Y
Yu Yang 已提交
1897 1898
        return self.blocks[self.current_block_idx]

W
Wu Yi 已提交
1899
    def _create_block(self, parent_idx=None):
Y
yuyang18 已提交
1900 1901 1902 1903 1904 1905 1906 1907 1908 1909
        """
        Create a new block with the :code:`parent_idx` and change the current block
        to new block.

        Args:
            parent_idx(int): The parent block index.

        Returns:
            Block: The new block.
        """
Y
Yu Yang 已提交
1910
        new_block_idx = len(self.blocks)
F
update  
fengjiayi 已提交
1911 1912 1913
        parent = self.current_block() if parent_idx is None else self.block(
            parent_idx)
        self.desc.append_block(parent.desc)
Y
Yu Yang 已提交
1914 1915 1916 1917
        self.current_block_idx = new_block_idx
        self.blocks.append(Block(self, self.current_block_idx))
        return self.current_block()

W
Wu Yi 已提交
1918
    def _rollback(self):
Y
yuyang18 已提交
1919 1920 1921 1922 1923
        """
        Exit a code block, i.e., roll back to the parent block.
        Returns:
            None
        """
Y
Yu Yang 已提交
1924 1925
        self.current_block_idx = self.current_block().parent_idx

W
Wu Yi 已提交
1926
    def _sync_with_cpp(self):
Y
yuyang18 已提交
1927 1928 1929 1930 1931 1932 1933 1934 1935 1936
        """
        Synchronize Python instance to its binding C++ object instance.
        If the program is modified in C++ space, this method should be invoked.

        Notes: This is a very low level API. Users should not invoke it
        directly.

        Returns:
            None
        """
Q
Qiao Longfei 已提交
1937 1938 1939
        for block_idx in range(len(self.blocks), self.desc.num_blocks()):
            self.blocks.append(Block(self, block_idx))
        for block in self.blocks:
W
Wu Yi 已提交
1940
            block._sync_with_cpp()
Q
Qiao Longfei 已提交
1941

W
Wu Yi 已提交
1942
    def _copy_param_info_from(self, other):
1943
        """
1944
        Copy the information of parameters from other program.
D
dzhwinter 已提交
1945

Y
yuyang18 已提交
1946 1947 1948
        Notes: This is a very low level API. Users should not invoke it
        directly.

1949 1950 1951 1952 1953 1954 1955
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1956
            raise TypeError("_copy_param_info_from should be invoked with "
1957 1958 1959
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
1960
            raise ValueError("_copy_param_info_from should be invoked with two "
1961
                             "program, with represent the same topology")
W
Wu Yi 已提交
1962
        self.global_block()._copy_param_info_from(other.global_block())
1963

1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982
    def _copy_dist_param_info_from(self, other):
        """
        Copy the information of distributed information from other program.

        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
            raise TypeError("_copy_dist_param_info_from should be invoked with "
                            "Program")
        self._is_distributed = other._is_distributed
        self._is_chief = other._is_chief
        self._slice_vars_and_attrs = other._slice_vars_and_attrs
        self._endpoints = other._endpoints
        self._distributed_lookup_table = other._distributed_lookup_table

W
Wu Yi 已提交
1983
    def _copy_data_info_from(self, other):
F
fengjiayi 已提交
1984 1985
        """
        Copy the information of data variables from other program.
D
dzhwinter 已提交
1986

Y
yuyang18 已提交
1987 1988 1989
        Notes: This is a very low level API. Users should not invoke it
        directly.

F
fengjiayi 已提交
1990 1991 1992 1993 1994 1995 1996
        Args:
            other(Program): Other program

        Returns:
            None
        """
        if not isinstance(other, Program):
W
Wu Yi 已提交
1997
            raise TypeError("_copy_param_info_from should be invoked with "
F
fengjiayi 已提交
1998 1999 2000
                            "Program")

        if len(self.blocks) != len(other.blocks):
W
Wu Yi 已提交
2001
            raise ValueError("_copy_param_info_from should be invoked with two "
F
fengjiayi 已提交
2002
                             "program, with represent the same topology")
2003
        for var in list(other.global_block().vars.values()):
F
fengjiayi 已提交
2004 2005 2006
            if var.is_data:
                self.global_block().var(var.name).is_data = True

2007
    def list_vars(self):
Y
yuyang18 已提交
2008 2009 2010 2011 2012 2013
        """
        Get all variables from this Program. A iterable object is returned.

        Returns:
            iterable: The generator will yield every variable in this program.
        """
2014
        for each_block in self.blocks:
2015
            for each_var in list(each_block.vars.values()):
2016 2017
                yield each_var

Y
Yu Yang 已提交
2018

Y
Yu Yang 已提交
2019
class Parameter(Variable):
2020
    """
2021
    Parameter is derived from Variable. A parameter is a persistable
2022
    Variable, and will be updated by optimizers after each iteration.
2023
    The training of a neural network is essentially the updating of
2024 2025
    its parameters.

2026
    Relative to a general Variable, a Parameter has several its own
2027 2028
    member variables:

2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040
    Args:
        trainable(bool): True if the parameter need to be updated after
            iterations.
        optimize_attr(map): Parameter attributes related with optimizing.
            Currently, it only contains 'learning_rate'.
            Default: {'learning_rate': 1.0}
        regularizer(WeightDecayRegularizer): The Regularizer which will
            be applied on the parameter. Default: None
        gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
            which will be applied on the parameter. Default: None
        do_model_average(bool): True if the model average strategy will
            be applied on this parameter.
2041 2042
    """

Y
Yu Yang 已提交
2043 2044 2045 2046 2047 2048 2049 2050 2051 2052
    def __init__(self, block, shape, dtype, **kwargs):
        if shape is None or dtype is None:
            raise ValueError("Parameter must set shape and dtype")
        if len(shape) == 0:
            raise ValueError("Parameter shape cannot be empty")

        for each in shape:
            if each < 0:
                raise ValueError("Parameter shape should not be related with "
                                 "batch-size")
2053 2054 2055

        Variable.__init__(
            self, block, persistable=True, shape=shape, dtype=dtype, **kwargs)
Y
Yu Yang 已提交
2056 2057 2058 2059
        self.trainable = kwargs.get('trainable', True)

        self.optimize_attr = kwargs.get('optimize_attr', {'learning_rate': 1.0})

2060 2061
        self.regularizer = kwargs.get('regularizer', None)

F
fengjiayi 已提交
2062
        self.gradient_clip_attr = kwargs.get('gradient_clip_attr', None)
Y
Yu Yang 已提交
2063

W
wanghaoshuang 已提交
2064
        self.do_model_average = kwargs.get('do_model_average', None)
W
wanghaoshuang 已提交
2065

F
fengjiayi 已提交
2066 2067 2068
    def __str__(self):
        return self.to_string(True)

F
update  
fengjiayi 已提交
2069 2070 2071
    def to_string(self, throw_on_error, with_details=False):
        """
        To debug string.
D
dzhwinter 已提交
2072

F
update  
fengjiayi 已提交
2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086
        Args:
            throw_on_error(bool): raise exception when self is not initialized
                when throw_on_error is True
            with_details(bool): more details about variables and parameters
                (e.g. trainable, optimize_attr, ...) will be printed when with_details is True

        Returns(str): The debug string.

        """
        assert isinstance(throw_on_error, bool) and isinstance(with_details,
                                                               bool)
        if with_details:
            res_str = Variable.to_string(self, throw_on_error, True)
            additional_attr = ("trainable", "optimize_attr", "regularizer",
W
wanghaoshuang 已提交
2087
                               "gradient_clip_attr", "do_model_average")
F
update  
fengjiayi 已提交
2088
            for attr_name in additional_attr:
2089 2090
                res_str += "%s: %s\n" % (
                    attr_name, six.binary_type(getattr(self, attr_name)))
F
update  
fengjiayi 已提交
2091 2092
        else:
            res_str = Variable.to_string(self, throw_on_error, False)
F
fengjiayi 已提交
2093 2094 2095 2096
        return res_str

    __repr__ = __str__

Y
Yu Yang 已提交
2097

Y
Yu Yang 已提交
2098
# program is a global instance.
Y
Yu Yang 已提交
2099 2100
_main_program_ = Program()
_startup_program_ = Program()
2101

2102

2103
def default_startup_program():
Y
Yu Yang 已提交
2104
    """
Y
yuyang18 已提交
2105 2106 2107 2108 2109 2110 2111 2112 2113
    Get default/global startup program.

    The layer function in :code:`fluid.layers` will create parameters, readers,
    NCCL handles as global variables. The :code:`startup_program` will
    initialize them by the operators in startup program. The layer function will
    append these initialization operators into startup program.

    This method will return the :code:`default` or the :code:`current` startup
    program. Users can use :code:`fluid.program_guard` to switch program.
2114

Y
Yu Yang 已提交
2115 2116 2117
    Returns:
        Program: startup program
    """
Y
Yu Yang 已提交
2118
    return _startup_program_
2119

2120

2121
def default_main_program():
Y
Yu Yang 已提交
2122
    """
Y
yuyang18 已提交
2123 2124 2125 2126 2127 2128 2129 2130 2131
    Get default/global main program. The main program is used for training or
    testing.

    All layer function in :code:`fluid.layers` will append operators and
    variables to the :code:`default_main_program`.

    The :code:`default_main_program` is the default program in a lot of APIs.
    For example, the :code:`Executor.run()` will execute the
    :code:`default_main_program` when the program is not specified.
2132

Y
Yu Yang 已提交
2133 2134 2135
    Returns:
        Program: main program
    """
Y
Yu Yang 已提交
2136
    return _main_program_
Y
Yu Yang 已提交
2137 2138 2139 2140 2141


def switch_main_program(program):
    """
    Switch the main program to a new program.
2142

Y
Yu Yang 已提交
2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156
    Args:
        program(Program): The new main program

    Returns:
        Program: The previous main program
    """
    global _main_program_
    prev_program = _main_program_
    _main_program_ = program
    return prev_program


def switch_startup_program(program):
    """
2157
    Switch the startup program to a new program
Y
Yu Yang 已提交
2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172
    Args:
        program(Program): The new startup program

    Returns:
        Program: The previous startup program
    """
    global _startup_program_
    prev_program = _startup_program_
    _startup_program_ = program
    return prev_program


@contextlib.contextmanager
def program_guard(main_program, startup_program=None):
    """
Y
yuyang18 已提交
2173 2174 2175
    Change the global main program and startup program with `with` statement.
    Layer functions in the Python `with` block will append operators and
    variables to the new main programs.
2176

Y
Yu Yang 已提交
2177
    Examples:
Y
yuyang18 已提交
2178 2179 2180 2181 2182 2183 2184 2185 2186 2187

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> startup_program = fluid.Program()
        >>> with fluid.program_guard(main_program, startup_program):
        >>>     data = fluid.layers.data(...)
        >>>     hidden = fluid.layers.fc(...)

    Notes: The temporary :code:`Program` can be used if the user does not need
    to construct either of startup program or main program.
2188

Y
Yu Yang 已提交
2189
    Examples:
Y
yuyang18 已提交
2190 2191 2192 2193 2194 2195

        >>> import paddle.fluid as fluid
        >>> main_program = fluid.Program()
        >>> # does not care about startup program. Just pass a temporary value.
        >>> with fluid.program_guard(main_program, fluid.Program()):
        >>>     data = ...
2196

Y
Yu Yang 已提交
2197
    Args:
Y
yuyang18 已提交
2198
        main_program(Program): New main program inside `with` statement.
2199
        startup_program(Program): New startup program inside `with` statement.
Y
Yu Yang 已提交
2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212
            None means do not change startup program.
    """
    if not isinstance(main_program, Program):
        raise TypeError("main_program should be Program")
    main_program = switch_main_program(main_program)
    if startup_program is not None:
        if not isinstance(startup_program, Program):
            raise TypeError("startup_program should be Program")
        startup_program = switch_startup_program(startup_program)
    yield
    switch_main_program(main_program)
    if startup_program is not None:
        switch_startup_program(startup_program)
X
xuwei06 已提交
2213 2214


W
Wu Yi 已提交
2215
def _get_var(name, program=None):
X
xuwei06 已提交
2216
    """
Y
yuyang18 已提交
2217
    Get a variable by name from the global block of a program.
F
fengjiayi 已提交
2218

X
xuwei06 已提交
2219 2220 2221
    Args:
        name(str): name of the variable
        program(Program|None): program object.
T
tangwei12 已提交
2222
        If None, default_global_program() will be used.
X
xuwei06 已提交
2223 2224 2225 2226 2227 2228 2229

    Returns:
        Variable
    """
    if program is None:
        program = default_main_program()
    assert isinstance(name, str)
2230
    assert isinstance(program, Program)
X
xuwei06 已提交
2231 2232

    return program.global_block().var(name)
X
Xin Pan 已提交
2233 2234 2235 2236 2237 2238 2239 2240 2241


@contextlib.contextmanager
def _imperative_guard():
    global _imperative_tracer_
    tmp_trace = _imperative_tracer_
    _imperative_tracer_ = core.Tracer()
    yield
    _imperative_tracer_ = tmp_trace