op_test.py 97.7 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

B
baojun 已提交
17
import os
18
import unittest
19
import warnings
20
import numpy as np
21
import random
M
minqiyang 已提交
22
import six
23
import struct
24
import time
25
import itertools
Y
Yu Yang 已提交
26
import collections
M
minqiyang 已提交
27
from collections import defaultdict
28
from copy import copy
29

30
import paddle
31
import paddle.fluid as fluid
32
from paddle.fluid.framework import _dygraph_tracer
33
import paddle.fluid.core as core
J
Jiabin Yang 已提交
34
from paddle.fluid.framework import _in_legacy_dygraph, _enable_legacy_dygraph, _in_eager_without_dygraph_check, _disable_legacy_dygraph
35
from paddle.fluid.framework import _test_eager_guard
36 37 38
from paddle.fluid.backward import append_backward
from paddle.fluid.op import Operator
from paddle.fluid.executor import Executor
A
arlesniak 已提交
39
from paddle.fluid.framework import Program, OpProtoHolder, Variable, _current_expected_place
40 41 42 43 44
from paddle.fluid.tests.unittests.testsuite import (
    create_op,
    set_input,
    append_input_output,
    append_loss_ops, )
45
from paddle.fluid import unique_name
46 47 48 49 50 51 52
from paddle.fluid.tests.unittests.white_list import (
    op_accuracy_white_list,
    check_shape_white_list,
    compile_vs_runtime_white_list,
    no_check_set_white_list,
    op_threshold_white_list,
    no_grad_set_white_list, )
53
from paddle.fluid.dygraph.dygraph_to_static.utils import parse_arg_and_kwargs
54

55 56 57 58 59
# For switch new eager mode globally
g_is_in_eager = _in_eager_without_dygraph_check()
g_enable_legacy_dygraph = _enable_legacy_dygraph if g_is_in_eager else lambda: None
g_disable_legacy_dygraph = _disable_legacy_dygraph if g_is_in_eager else lambda: None

60

61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102
def check_out_dtype(api_fn, in_specs, expect_dtypes, target_index=0, **configs):
    """
    Determines whether dtype of output tensor is as expected.

    Args:
        api_fn(callable):  paddle api function
        in_specs(list[tuple]): list of shape and dtype information for constructing input tensor of api_fn, such as [(shape, dtype), (shape, dtype)].
        expected_dtype(list[str]): expected dtype of output tensor.
        target_index(int): indicate which one from in_specs to infer the dtype of output.
        config(dict): other arguments of paddle api function

    Example:
        check_out_dtype(fluid.layers.pad_constant_like, [([2,3,2,3], 'float64'), ([1, 3, 1,3], )], ['float32', 'float64', 'int64'], target_index=1, pad_value=0.)

    """
    paddle.enable_static()
    for i, expect_dtype in enumerate(expect_dtypes):
        with paddle.static.program_guard(paddle.static.Program()):
            input_t = []
            for index, spec in enumerate(in_specs):
                if len(spec) == 1:
                    shape = spec[0]
                    dtype = expect_dtype if target_index == index else 'float32'
                elif len(spec) == 2:
                    shape, dtype = spec
                else:
                    raise ValueError(
                        "Value of in_specs[{}] should contains two elements: [shape, dtype]".
                        format(index))
                input_t.append(
                    paddle.static.data(
                        name='data_%s' % index, shape=shape, dtype=dtype))

            out = api_fn(*input_t, **configs)
            out_dtype = fluid.data_feeder.convert_dtype(out.dtype)

            if out_dtype != expect_dtype:
                raise ValueError(
                    "Expected out.dtype is {}, but got {} from {}.".format(
                        expect_dtype, out_dtype, api_fn.__name__))


103 104 105 106 107 108 109 110
def _set_use_system_allocator(value=None):
    USE_SYSTEM_ALLOCATOR_FLAG = "FLAGS_use_system_allocator"
    old_value = core.globals()[USE_SYSTEM_ALLOCATOR_FLAG]
    value = old_value if value is None else value
    core.globals()[USE_SYSTEM_ALLOCATOR_FLAG] = value
    return old_value


111 112 113 114
def randomize_probability(batch_size, class_num, dtype='float32'):
    prob = np.random.uniform(
        0.1, 1.0, size=(batch_size, class_num)).astype(dtype)
    prob_sum = prob.sum(axis=1)
M
minqiyang 已提交
115
    for i in six.moves.xrange(len(prob)):
116 117 118 119
        prob[i] /= prob_sum[i]
    return prob


120 121
def get_numeric_gradient(place,
                         scope,
122 123 124
                         op,
                         inputs,
                         input_to_check,
Y
Yancey 已提交
125
                         output_names,
126
                         delta=0.005,
C
chengduo 已提交
127
                         in_place=False):
Y
Yu Yang 已提交
128
    # FIXME: change this method by compile time concepts
129
    set_input(scope, op, inputs, place)
130 131

    def product(dim):
M
minqiyang 已提交
132
        return six.moves.reduce(lambda a, b: a * b, dim, 1)
133 134

    tensor_to_check = scope.find_var(input_to_check).get_tensor()
Y
yuyang18 已提交
135 136
    tensor_size = product(tensor_to_check.shape())
    tensor_to_check_dtype = tensor_to_check._dtype()
137
    if tensor_to_check_dtype == core.VarDesc.VarType.FP32:
138
        tensor_to_check_dtype = np.float32
139
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP64:
140
        tensor_to_check_dtype = np.float64
D
dzhwinter 已提交
141 142 143 144
    elif tensor_to_check_dtype == core.VarDesc.VarType.FP16:
        tensor_to_check_dtype = np.float16
        # set delta as np.float16, will automatic convert to float32, float64
        delta = np.array(delta).astype(np.float16)
145 146
    elif tensor_to_check_dtype == core.VarDesc.VarType.BF16:
        tensor_to_check_dtype = np.float32
L
Lijunhui 已提交
147 148 149 150
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX64:
        tensor_to_check_dtype = np.complex64
    elif tensor_to_check_dtype == core.VarDesc.VarType.COMPLEX128:
        tensor_tp_check_dtype = np.complex128
151
    else:
152 153
        raise ValueError("Not supported data type " + str(tensor_to_check_dtype)
                         + ", tensor name : " + str(input_to_check))
154

C
chengduo 已提交
155 156 157 158
    def get_output():
        sum = []
        op.run(scope, place)
        for output_name in output_names:
159
            output_numpy = np.array(scope.find_var(output_name).get_tensor())
Y
Yiqun Liu 已提交
160 161 162
            # numpy.dtype does not have bfloat16, thus we use numpy.uint16 to
            # store bfloat16 data, and need to be converted to float to check
            # the floating precision.
163 164 165
            if tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
                output_numpy = convert_uint16_to_float(output_numpy)
            sum.append(output_numpy.astype(tensor_to_check_dtype).mean())
C
chengduo 已提交
166 167
        return tensor_to_check_dtype(np.array(sum).sum() / len(output_names))

168 169 170
    gradient_flat = np.zeros(shape=(tensor_size, ), dtype=tensor_to_check_dtype)

    def __get_elem__(tensor, i):
D
dzhwinter 已提交
171 172 173 174
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            numpy_tensor = numpy_tensor.flatten()
            return numpy_tensor[i]
175 176 177
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            numpy_tensor = numpy_tensor.flatten()
178 179 180 181
            return struct.unpack('<f',
                                 struct.pack('<I',
                                             np.uint32(numpy_tensor[i])
                                             << np.uint32(16)))[0]
D
dzhwinter 已提交
182
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
183
            return tensor._get_float_element(i)
184
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
185
            return tensor._get_double_element(i)
186 187 188
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
189 190

    def __set_elem__(tensor, i, e):
D
dzhwinter 已提交
191 192 193 194 195
        if tensor_to_check_dtype == np.float16:
            numpy_tensor = np.array(tensor).astype(np.float16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = e
196
            numpy_tensor = numpy_tensor.reshape(shape)
D
dzhwinter 已提交
197
            tensor.set(numpy_tensor, place)
198 199 200 201 202 203 204
        elif tensor_to_check._dtype() == core.VarDesc.VarType.BF16:
            numpy_tensor = np.array(tensor).astype(np.uint16)
            shape = numpy_tensor.shape
            numpy_tensor = numpy_tensor.flatten()
            numpy_tensor[i] = np.uint16(copy_bits_from_float_to_uint16(e))
            numpy_tensor = numpy_tensor.reshape(shape)
            tensor.set(numpy_tensor, place)
D
dzhwinter 已提交
205
        elif tensor_to_check_dtype == np.float32:
Y
yuyang18 已提交
206
            tensor._set_float_element(i, e)
207
        elif tensor_to_check_dtype == np.float64:
Y
yuyang18 已提交
208
            tensor._set_double_element(i, e)
209 210 211
        else:
            raise TypeError("Unsupported test data type %s." %
                            tensor_to_check_dtype)
212

213 214
    # we only compute gradient of one element each time.
    # we use a for loop to compute the gradient of every element.
M
minqiyang 已提交
215
    for i in six.moves.xrange(tensor_size):
216
        if in_place:
217
            set_input(scope, op, inputs, place)
218 219

        # get one input element throw it's index i.
220
        origin = __get_elem__(tensor_to_check, i)
221 222
        # add delta to it, run op and then get the sum of the result tensor.
        x_pos = origin + delta
223
        __set_elem__(tensor_to_check, i, x_pos)
224 225 226
        y_pos = get_output()

        if in_place:
227
            set_input(scope, op, inputs, place)
228 229

        x_neg = origin - delta
230
        __set_elem__(tensor_to_check, i, x_neg)
231 232
        y_neg = get_output()

233
        __set_elem__(tensor_to_check, i, origin)
234 235
        gradient_flat[i] = (y_pos - y_neg) / delta / 2

Y
yuyang18 已提交
236
    return gradient_flat.reshape(tensor_to_check.shape())
237 238


239 240
def skip_check_grad_ci(reason=None):
    """Decorator to skip check_grad CI.
C
cc 已提交
241

242
       Check_grad is required for Op test cases. However, there are some special
C
cc 已提交
243
       cases that do not need to do check_grad. This decorator is used to skip the
244
       check_grad of the above cases.
C
cc 已提交
245 246

       Note: the execution of unit test will not be skipped. It just avoids check_grad
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
       checking in tearDownClass method by setting a `no_need_check_grad` flag.

       Example:
           @skip_check_grad_ci(reason="For inference, check_grad is not required.")
           class TestInference(OpTest):
    """
    if not isinstance(reason, str):
        raise AssertionError("The reason for skipping check_grad is required.")

    def wrapper(cls):
        cls.no_need_check_grad = True
        return cls

    return wrapper


263 264 265 266
def copy_bits_from_float_to_uint16(f):
    return struct.unpack('<I', struct.pack('<f', f))[0] >> 16


267 268 269 270
def convert_float_to_uint16(float_list, data_format="NCHW"):
    if data_format == "NHWC":
        float_list = np.transpose(float_list, [0, 3, 1, 2])

271 272 273
    new_output = []
    for x in np.nditer(float_list):
        new_output.append(np.uint16(copy_bits_from_float_to_uint16(x)))
274
    new_output = np.reshape(new_output, float_list.shape).view(np.uint16)
275

276 277 278
    if data_format == "NHWC":
        new_output = np.transpose(new_output, [0, 2, 3, 1])
    return new_output
279 280


281 282 283
def convert_uint16_to_float(in_list):
    in_list = np.asarray(in_list)
    out = np.vectorize(
284
        lambda x: struct.unpack('<f', struct.pack('<I', np.uint32(x) << np.uint32(16)))[0],
285 286
        otypes=[np.float32])(in_list.flat)
    return np.reshape(out, in_list.shape)
287 288


289
class OpTest(unittest.TestCase):
290 291 292 293 294
    @classmethod
    def setUpClass(cls):
        '''Fix random seeds to remove randomness from tests'''
        cls._np_rand_state = np.random.get_state()
        cls._py_rand_state = random.getstate()
295
        cls.call_once = False
296
        cls.dtype = None
297
        cls.outputs = {}
298
        cls.input_shape_is_large = True
299 300 301 302

        np.random.seed(123)
        random.seed(124)

303 304 305 306
        if paddle.is_compiled_with_npu():
            cls._use_system_allocator = _set_use_system_allocator(False)
        else:
            cls._use_system_allocator = _set_use_system_allocator(True)
307

308 309
    @classmethod
    def tearDownClass(cls):
Y
yuyang18 已提交
310
        """Restore random seeds"""
311 312 313
        np.random.set_state(cls._np_rand_state)
        random.setstate(cls._py_rand_state)

314 315
        _set_use_system_allocator(cls._use_system_allocator)

316 317 318 319
        def is_empty_grad_op(op_type):
            all_op_kernels = core._get_all_register_op_kernels()
            grad_op = op_type + '_grad'
            if grad_op in all_op_kernels.keys():
J
juncaipeng 已提交
320
                if is_mkldnn_op_test():
321 322 323 324 325 326 327 328
                    grad_op_kernels = all_op_kernels[grad_op]
                    for grad_op_kernel in grad_op_kernels:
                        if 'MKLDNN' in grad_op_kernel:
                            return False
                else:
                    return False
            return True

329 330 331
        def is_xpu_op_test():
            return hasattr(cls, "use_xpu") and cls.use_xpu == True

J
juncaipeng 已提交
332
        def is_mkldnn_op_test():
333
            return hasattr(cls, "use_mkldnn") and cls.use_mkldnn == True
J
juncaipeng 已提交
334

335 336 337
        def is_rocm_op_test():
            return core.is_compiled_with_rocm()

338 339 340
        def is_npu_op_test():
            return hasattr(cls, "use_npu") and cls.use_npu == True

341 342 343
        def is_mlu_op_test():
            return hasattr(cls, "use_mlu") and cls.use_mlu == True

344 345 346 347
        def is_custom_device_op_test():
            return hasattr(
                cls, "use_custom_device") and cls.use_custom_device == True

348 349
        if not hasattr(cls, "op_type"):
            raise AssertionError(
350 351
                "This test do not have op_type in class attrs, "
                "please set self.__class__.op_type=the_real_op_type manually.")
352

J
juncaipeng 已提交
353 354
        # case in NO_FP64_CHECK_GRAD_CASES and op in NO_FP64_CHECK_GRAD_OP_LIST should be fixed
        if not hasattr(cls, "no_need_check_grad") \
355
            and not is_empty_grad_op(cls.op_type):
J
juncaipeng 已提交
356
            if cls.dtype is None or \
357 358
                (cls.dtype == np.float16 \
                    and cls.op_type not in op_accuracy_white_list.NO_FP16_CHECK_GRAD_OP_LIST \
J
juncaipeng 已提交
359 360 361 362
                    and not hasattr(cls, "exist_check_grad")):
                raise AssertionError("This test of %s op needs check_grad." %
                                     cls.op_type)

363
            # check for op test with fp64 precision, but not check mkldnn op test for now
J
juncaipeng 已提交
364 365
            if cls.dtype in [np.float32, np.float64] \
                and cls.op_type not in op_accuracy_white_list.NO_FP64_CHECK_GRAD_OP_LIST \
366
                and not hasattr(cls, 'exist_fp64_check_grad') \
367
                and not is_xpu_op_test() \
368
                and not is_mkldnn_op_test() \
369
                and not is_rocm_op_test() \
370
                and not is_npu_op_test() \
371 372
                and not is_mlu_op_test() \
                and not is_custom_device_op_test():
J
juncaipeng 已提交
373 374 375 376
                raise AssertionError(
                    "This test of %s op needs check_grad with fp64 precision." %
                    cls.op_type)

377
            if not cls.input_shape_is_large \
378 379 380 381
                and cls.op_type not in check_shape_white_list.NEED_TO_FIX_OP_LIST:
                raise AssertionError(
                    "Input's shape should be large than or equal to 100 for " +
                    cls.op_type + " Op.")
382

383 384 385 386 387
    def try_call_once(self, data_type):
        if not self.call_once:
            self.call_once = True
            self.dtype = data_type

388
    def is_bfloat16_op(self):
Y
Yiqun Liu 已提交
389 390
        # self.dtype is the dtype of inputs, and is set in infer_dtype_from_inputs_outputs.
        # Make sure this function is called after calling infer_dtype_from_inputs_outputs.
391
        return self.dtype == np.uint16 or (
Y
Yiqun Liu 已提交
392 393 394
            hasattr(self, 'output_dtype') and
            self.output_dtype == np.uint16) or (
                hasattr(self, 'mkldnn_data_type') and
395
                getattr(self, 'mkldnn_data_type') == "bfloat16") or (
Y
Yiqun Liu 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408
                    hasattr(self, 'attrs') and
                    'mkldnn_data_type' in self.attrs and
                    self.attrs['mkldnn_data_type'] == 'bfloat16')

    def is_mkldnn_op(self):
        return (hasattr(self, "use_mkldnn") and self.use_mkldnn == True) or (
            hasattr(self, "attrs") and "use_mkldnn" in self.attrs and
            self.attrs["use_mkldnn"] == True)

    def is_xpu_op(self):
        return (hasattr(self, "use_xpu") and self.use_xpu == True) or (
            hasattr(self, "attrs") and "use_xpu" in self.attrs and
            self.attrs["use_xpu"] == True)
409

410
    # set the self.output_dtype .
411
    def infer_dtype_from_inputs_outputs(self, inputs, outputs):
J
juncaipeng 已提交
412 413 414 415
        def is_np_data(input):
            return isinstance(input, (np.ndarray, np.generic))

        def infer_dtype(numpy_dict, dtype_set):
416 417 418
            assert isinstance(
                numpy_dict,
                dict), "self.inputs, self.outputs must be numpy_dict"
J
juncaipeng 已提交
419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
            # the inputs are as follows:
            # case 1: inputs = {'X': x}
            # case 2: inputs = {'X': (x, x_lod)}
            # case 3: inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]}
            # case 4: inputs = {'X': [("x1", (x1, [x1_lod1])), ("x2", (x2, [x2_.lod2]))]}
            # TODO(juncaipeng) infer dtype from inputs maybe obtain wrong type.
            for _, var_value in six.iteritems(numpy_dict):
                if is_np_data(var_value):  # case 1
                    dtype_set.add(var_value.dtype)
                elif isinstance(var_value, (list, tuple)):  # case 2, 3, 4
                    for sub_val_value in var_value:
                        if is_np_data(sub_val_value):  # case 2
                            dtype_set.add(sub_val_value.dtype)
                        elif len(sub_val_value) > 1 and is_np_data(
                                sub_val_value[1]):  # case 3
                            dtype_set.add(sub_val_value[1].dtype)
                        elif len(sub_val_value) > 1 and isinstance(sub_val_value[1], (list, tuple)) \
                            and is_np_data(sub_val_value[1][0]): # case 4
                            dtype_set.add(sub_val_value[1][0].dtype)

        # infer dtype from inputs, and dtype means the precision of the test
        # collect dtype of all inputs
Y
Yiqun Liu 已提交
441 442
        input_dtype_set = set()
        infer_dtype(inputs, input_dtype_set)
J
juncaipeng 已提交
443 444
        dtype_list = [
            np.dtype(np.float64), np.dtype(np.float32), np.dtype(np.float16),
445 446 447
            np.dtype(np.int64), np.dtype(np.int32), np.dtype(np.uint16),
            np.dtype(np.int16), np.dtype(np.int8), np.dtype(np.uint8),
            np.dtype(np.bool)
J
juncaipeng 已提交
448 449 450
        ]
        # check the dtype in dtype_list in order, select the first dtype that in dtype_set
        for dtype in dtype_list:
Y
Yiqun Liu 已提交
451
            if dtype in input_dtype_set:
J
juncaipeng 已提交
452 453
                self.dtype = dtype
                break
Y
Yiqun Liu 已提交
454
        # save input dtype in class attr
455
        self.__class__.dtype = self.dtype
456

Y
Yiqun Liu 已提交
457 458 459 460 461 462 463 464
        # infer dtype of outputs
        output_dtype_set = set()
        infer_dtype(outputs, output_dtype_set)
        for dtype in dtype_list:
            if dtype in output_dtype_set:
                self.output_dtype = dtype
                break

Y
Yang Yang(Tony) 已提交
465 466 467 468 469 470
    def feed_var(self, input_vars, place):
        feed_map = {}
        for var_name in input_vars:
            if isinstance(input_vars[var_name], list):
                for name, np_value in self.inputs[var_name]:
                    tensor = core.LoDTensor()
471
                    if isinstance(np_value, tuple):
472
                        tensor.set(np_value[0], place)
473
                        tensor.set_recursive_sequence_lengths(np_value[1])
474
                    else:
475
                        tensor.set(np_value, place)
Y
Yang Yang(Tony) 已提交
476 477 478 479
                    feed_map[name] = tensor
            else:
                tensor = core.LoDTensor()
                if isinstance(self.inputs[var_name], tuple):
480
                    tensor.set(self.inputs[var_name][0], place)
481 482
                    tensor.set_recursive_sequence_lengths(self.inputs[var_name][
                        1])
Y
Yang Yang(Tony) 已提交
483
                else:
484
                    tensor.set(self.inputs[var_name], place)
Y
Yang Yang(Tony) 已提交
485 486 487
                feed_map[var_name] = tensor
        return feed_map

488
    def _append_ops(self, block):
J
juncaipeng 已提交
489
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
Y
Yiqun Liu 已提交
490
        if self.is_mkldnn_op():
491
            self.__class__.use_mkldnn = True
C
cc 已提交
492

Y
Yiqun Liu 已提交
493
        if self.is_xpu_op():
494 495
            self.__class__.use_xpu = True

Y
Yang Yang(Tony) 已提交
496
        op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
497
        "infer datatype from inputs and outputs for this test case"
498 499 500 501 502 503
        if self.is_bfloat16_op():
            self.dtype = np.uint16
            self.__class__.dtype = self.dtype
            self.output_dtype = np.uint16
        else:
            self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
504 505 506 507
        inputs = append_input_output(block, op_proto, self.inputs, True,
                                     self.dtype)
        outputs = append_input_output(block, op_proto, self.outputs, False,
                                      self.dtype)
P
phlrain 已提交
508 509 510 511 512 513 514 515 516

        if hasattr(self, "cache_name_list"):
            for name in self.cache_name_list:
                inputs[name] = block.create_var(
                    name=name,
                    persistable=True,
                    type=core.VarDesc.VarType.RAW,
                    stop_gradient=True)

Y
Yang Yang(Tony) 已提交
517 518 519 520
        op = block.append_op(
            type=self.op_type,
            inputs=inputs,
            outputs=outputs,
521
            attrs=copy(self.attrs) if hasattr(self, "attrs") else dict())
C
cc 已提交
522
        # infer variable type and infer shape in compile-time
Q
QI JUN 已提交
523 524
        op.desc.infer_var_type(block.desc)
        op.desc.infer_shape(block.desc)
Y
Yang Yang(Tony) 已提交
525

526 527
        return op

528 529
    def _get_io_vars(self, block, numpy_inputs):
        inputs = {}
M
minqiyang 已提交
530
        for name, value in six.iteritems(numpy_inputs):
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549
            if isinstance(value, list):
                var_list = [
                    block.var(sub_name) for sub_name, sub_value in value
                ]
                inputs[name] = var_list
            else:
                inputs[name] = block.var(name)
        return inputs

    def _get_inputs(self, block):
        return self._get_io_vars(block, self.inputs)

    def _get_outputs(self, block):
        return self._get_io_vars(block, self.outputs)

    def calc_output(self, place):
        outs, _ = self._calc_output(place)
        return outs

M
minqiyang 已提交
550 551 552 553
    def _create_var_from_numpy(self, value):
        if isinstance(value, tuple):
            data = value[0]
            lod = value[1]
L
lujun 已提交
554
            v = fluid.dygraph.base.to_variable(value=data)
555
            v.value().get_tensor().set_recursive_sequence_lengths(lod)
M
minqiyang 已提交
556 557
            return v
        else:
L
lujun 已提交
558
            return fluid.dygraph.base.to_variable(value)
M
minqiyang 已提交
559

560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
    def get_sequence_batch_size_1_input(self, lod=None, shape=None):
        """Get LoD input data whose batch size is 1.
        All sequence related OP unittests should call this function to contain the case of batch size = 1.
        Args:
            lod (list[list of int], optional): Length-based LoD, length of lod[0] should be 1. Default: [[13]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod) : LoD input data whose batch size is 1.
        """
        if lod is None:
            lod = [[13]]
        if shape is None:
            shape = [13, 23]
        assert len(lod[0]) == 1
        assert lod[0][0] == shape[0]
        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613
    def lod_has_single_zero(self, lod):
        for i in range(len(lod) - 2):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] != 0:
                return True
        return False

    def lod_has_continuous_zero(self, lod):
        for i in range(len(lod) - 3):
            if lod[i] != 0 and lod[i + 1] == 0 and lod[i + 2] == 0 and lod[
                    i + 3] != 0:
                return True
        return False

    def get_sequence_instance_size_0_input(self, lod=None, shape=None):
        """Get LoD input data whose instance size is 0.
        All sequence related OP unittests should call this function to contain the case of instance size is 0.
        Args:
            lod (list[list of int], optional): Length-based LoD, lod[0]'s size must at least eight, lod[0] must at least two zeros at the beginning and at least two zeros at the end, the middle position of lod[0] contains a single zero and multiple zero. Default: [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]].
            shape (list, optional): Shape of input, shape[0] should be equals to lod[0][0]. Default: [13, 23].
        Returns:
            tuple (ndarray, lod): LoD input data whose instance size is 0.
        """
        if lod is None:
            lod = [[0, 0, 4, 0, 3, 0, 0, 5, 0, 0]]
        if shape is None:
            shape = [12, 10]
        assert len(lod[0]) >= 8
        assert lod[0][0] == 0 and lod[0][1] == 0 and lod[0][-1] == 0 and lod[0][
            -2] == 0
        assert self.lod_has_single_zero(lod[0]) is True
        assert self.lod_has_continuous_zero(lod[0]) is True
        assert sum(lod[0]) == shape[0]

        x = np.random.uniform(0.1, 1, shape).astype('float32')
        return (x, lod)

614 615 616 617 618 619 620 621 622 623 624 625 626
    def append_input_output_for_dygraph(self, op_proto, np_list, is_input,
                                        if_return_inputs_grad_dict, block):
        def create_var(np_value, name, is_input, if_return_inputs_grad_dict):
            np_value_temp = np_value
            has_lod = False
            lod_temp = None
            if isinstance(np_value, tuple):
                np_value_temp = np_value[0]
                has_lod = True
                lod_temp = np_value[1]

            if is_input:
                v = self._create_var_from_numpy(np_value_temp)
627

628 629
                if if_return_inputs_grad_dict:
                    v.stop_gradient = False
J
Jiabin Yang 已提交
630
                    if not _in_legacy_dygraph():
631 632
                        v.retain_grads()

633
                if has_lod:
634
                    v.value().get_tensor().set_recursive_sequence_lengths(
635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
                        lod_temp)
            else:
                v = block.create_var(
                    name=name,
                    dtype=np_value_temp.dtype,
                    type=core.VarDesc.VarType.LOD_TENSOR,
                    persistable=False,
                    stop_gradient=False)
            return v

        # prepare variable for input or output
        var_dict = defaultdict(list)
        if if_return_inputs_grad_dict:
            inputs_grad_dict = defaultdict()
        proto_list = op_proto.inputs if is_input else op_proto.outputs
        for var_proto in proto_list:
            name = var_proto.name
            if (name not in np_list) and var_proto.dispensable:
                continue
            if name not in np_list:
                assert var_proto.intermediate, "{} not found".format(name)
                v = block.create_var(
                    dtype='float32', type=core.VarDesc.VarType.LOD_TENSOR)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v
                continue
            if var_proto.duplicable:
                assert isinstance(
                    np_list[name],
                    list), "Duplicable {} should be set as list".format(name)
                var_list = []
                slot_name = name
                for (name, np_value) in np_list[name]:
                    v = create_var(np_value, name, is_input,
                                   if_return_inputs_grad_dict)
                    var_list.append(v)
                    if if_return_inputs_grad_dict:
                        inputs_grad_dict[name] = v
                var_dict[slot_name] = var_list
            else:
                nplist_value_temp = None
                name_temp = None
                if isinstance(np_list[name], list):
                    nplist_value_temp = np_list[name][0]
                    name_temp = name
                else:
                    nplist_value_temp = np_list[name]
                    name_temp = unique_name.generate("%s_out" % (name))
                v = create_var(nplist_value_temp, name_temp, is_input,
                               if_return_inputs_grad_dict)
                var_dict[name].append(v)
                if if_return_inputs_grad_dict:
                    inputs_grad_dict[name] = v

        if if_return_inputs_grad_dict:
            return var_dict, inputs_grad_dict
        else:
            return var_dict

695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
    def _check_api_outs_by_dygraph_outs(self, api_outs, dygraph_outs, place):
        """ for quick verify, here we take a simplest strategy:
                1. we only check variable in api_outs.
                2. we simply check the numpy (tensor) .
                3. we set atol and rtol as 1e-5, because they are unrelated to dtype.
        """
        for name in api_outs:
            np_api = np.array(api_outs[name])
            np_dyg = np.array(dygraph_outs[name])
            self.assertTrue(
                np.allclose(
                    np_api, np_dyg, equal_nan=False),
                "Output (" + name + ") has diff at " + str(place) + "\nExpect "
                + str(np_dyg) + "\n" + "But Got" + str(np_api) + " in class " +
                self.__class__.__name__)

711 712 713 714
    def _calc_python_api_output(self, place, egr_inps=None, egr_oups=None):
        """ set egr_inps and egr_oups = None if you want to create it by yourself.
        """

715
        def prepare_python_api_arguments(api, op_proto_ins, op_proto_attrs,
716 717
                                         kernel_sig):
            """ map from `op proto inputs and attrs` to `api input list and api attrs dict`
Z
zyfncg 已提交
718 719
                
                NOTE: the op_proto_attrs and op_proto_ins is a default dict. default value is []
720
            """
721 722 723 724 725 726 727

            class Empty:
                pass

            def is_empty(a):
                return isinstance(a, Empty)

728 729 730 731 732
            def get_default(idx, defaults):
                assert not isinstance(
                    defaults[idx], Empty
                ), "%d-th params of python api don't have default value." % idx
                return defaults[idx]
733 734 735 736

            def to_defaults_list(params, defaults):
                return [defaults[p] for p in params if p in defaults]

737 738 739 740 741 742 743 744 745
            def parse_attri_value(name, op_inputs, op_attrs):
                """ parse true value from inputs and attrs, if there is no name passed by OpTest, return Empty
                    1. if the name in op_attrs, use the op_attrs[name]
                    2. if the name in op_inputs, convert the op_inputs to [type of default value]
                    3. if the name not in op_attrs ans op_inputs, return Empty. (this will use the default value from python api)
                """
                if name in op_proto_attrs:
                    return op_proto_attrs[name]
                elif name in op_inputs:
X
xiongkun 已提交
746 747 748 749 750 751 752 753
                    if len(op_inputs[name]) == 1:
                        # why don't use numpy().item() : if the Tensor is float64, we will change it to python.float32, where we loss accuracy: [allclose_op]
                        # why we reconstruct a tensor: because we want the tensor in cpu. 
                        return paddle.to_tensor(
                            op_inputs[name][0].numpy(), place='cpu')
                    else:
                        # if this is a list (test_unsqueeze2_op): we just pass it into the python api.
                        return op_inputs[name]
754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771
                else:
                    return Empty()

            # NOTE(xiongkun): the logic of constructing parameters: 
            # for example:  
            #    python api: cumprod(x, dim, dtype=None, name=None) 
            #    kernel sig: [["x"], ["dim"], ["out"]]"
            #
            # we will construct a lot of list with the same length : len == len(api_params), here is 4
            #    api_params = ["x", "dim", "dtype", "name"]
            #    api_defaults = [Empty, Empty, None, None]; empty means no defaults.
            #    inputs_and_attrs = ["x", "dim"] , the length may shorter or longer than api_params
            #    input_arguments = [RealValue in self.inputs and self.attrs]
            # then ,we will loop for the api_params, construct a result list: 
            #    if the name in ['name', 'dtype', 'out', 'output'], we will use the default value
            #    else, we will consume a input_arguments. (because the name is not corresponding, so we only use the order)

            api_params, api_defaults = parse_arg_and_kwargs(api)
772
            api_defaults = to_defaults_list(api_params, api_defaults)
773 774 775 776 777
            api_defaults = [
                Empty() for i in range(len(api_params) - len(api_defaults))
            ] + api_defaults
            assert len(api_defaults) == len(
                api_params), "Error happens. contack xiongkun03 to solve."
778
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
779
            inputs_and_attrs = inputs_sig + attrs_sig
Z
zyfncg 已提交
780 781 782
            input_arguments = [
                op_proto_ins.get(name, Empty()) for name in inputs_sig
            ] + [
783
                parse_attri_value(name, op_proto_ins, op_proto_attrs)
784 785 786
                for name in attrs_sig
            ]
            results = []
787 788 789 790 791
            api_ignore_param_list = set(['name', 'dtype', 'out', 'output'])
            idx_of_op_proto_arguments = 0
            for idx, arg_name in enumerate(api_params):
                if arg_name in api_ignore_param_list:
                    results.append(get_default(idx, api_defaults))
792
                else:
793 794 795 796 797 798
                    if (idx_of_op_proto_arguments < len(input_arguments)):
                        tmp = input_arguments[idx_of_op_proto_arguments]
                        idx_of_op_proto_arguments += 1
                    else:
                        tmp = Empty()  # use the default value

799 800 801 802 803
                    if isinstance(tmp, Empty):
                        results.append(get_default(idx, api_defaults))
                    else:
                        results.append(tmp)
            assert len(results) == len(api_params)
804
            return results
805 806

        def construct_output_dict_by_kernel_sig(ret_tuple, output_sig):
X
xiongkun 已提交
807 808
            if hasattr(self, "python_out_sig"):
                output_sig = self.python_out_sig
809 810
            if not isinstance(ret_tuple, (tuple, list)):
                ret_tuple = [ret_tuple]
811 812 813 814 815 816 817
            if len(output_sig) == len(ret_tuple):
                # [assumption]: we assume {"Out": [Tensor]}
                return {a: [b] for a, b in zip(output_sig, ret_tuple)}
            else:
                # [assumption]: return multi-Tensor in a single output. such as paddle.split()
                assert len(
                    output_sig
X
xiongkun 已提交
818
                ) == 1, "Don't support multi-output with multi-tensor output. (May be you can use set `python_out_sig`, see `test_squeeze2_op` as a example.)"
819
                return {output_sig[0]: ret_tuple}
820

821
        def assumption_assert_and_transform(args, inp_num):
822
            """
823
            transform inputs by the following rules:
824 825
                1. [Tensor] -> Tensor
                2. [Tensor, Tensor, ...] -> list of Tensors
Z
zyfncg 已提交
826 827
                3. None -> None
                4. Others: raise Error
828 829

            only support "X" is list of Tensor, currently don't support other structure like dict.
830
            """
Z
zyfncg 已提交
831 832 833
            inp_args = [[inp] if inp is None else inp
                        for inp in args[:inp_num]]  # convert None -> [None]
            for inp in inp_args:
834 835 836
                assert isinstance(
                    inp, list
                ), "currently only support `X` is [Tensor], don't support other structure."
Z
zyfncg 已提交
837 838
            args = [inp[0] if len(inp) == 1 else inp
                    for inp in inp_args] + args[inp_num:]
839
            return args
840

841 842 843 844 845 846 847 848 849 850
        def _get_kernel_signature(eager_tensor_inputs, eager_tensor_outputs,
                                  attrs_outputs):
            try:
                kernel_sig = _dygraph_tracer()._get_kernel_signature(
                    self.op_type, eager_tensor_inputs, eager_tensor_outputs,
                    attrs_outputs)
            except RuntimeError as re:
                """ we think the kernel_sig is missing.
                """
                kernel_sig = None
X
xiongkun 已提交
851 852 853
                print(
                    "[Warning: op_test.py] Kernel Signature is not found for %s, fall back to intermediate state."
                    % self.op_type)
854 855
            return kernel_sig

856
        def cal_python_api(python_api, args, kernel_sig):
857
            inputs_sig, attrs_sig, outputs_sig = kernel_sig
858 859
            args = assumption_assert_and_transform(args, len(inputs_sig))
            ret_tuple = python_api(*args)
860 861 862 863 864 865
            return construct_output_dict_by_kernel_sig(ret_tuple, outputs_sig)

        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
            # prepare input variable
866
            eager_tensor_inputs = egr_inps if egr_inps else self.append_input_output_for_dygraph(
867
                op_proto, self.inputs, True, False, block)
868
            # prepare output variable
869
            eager_tensor_outputs = egr_oups if egr_oups else self.append_input_output_for_dygraph(
870 871 872 873 874 875 876 877 878
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]

879 880 881 882
            kernel_sig = _get_kernel_signature(
                eager_tensor_inputs, eager_tensor_outputs, attrs_outputs)
            if not kernel_sig:
                return None
883 884
            assert hasattr(
                self, "python_api"
885
            ), "Detect there is KernelSignature for `%s` op, please set the `self.python_api` if you set check_eager = True" % self.op_type
886 887
            args = prepare_python_api_arguments(
                self.python_api, eager_tensor_inputs, attrs_outputs, kernel_sig)
888 889
            """ we directly return the cal_python_api value because the value is already tensor. 
            """
890
            return cal_python_api(self.python_api, args, kernel_sig)
891

L
lujun 已提交
892
    def _calc_dygraph_output(self, place, parallel=False, no_check_set=None):
J
juncaipeng 已提交
893
        self.__class__.op_type = self.op_type  # for ci check, please not delete it for now
L
lujun 已提交
894
        with fluid.dygraph.base.guard(place=place):
M
minqiyang 已提交
895 896
            block = fluid.default_main_program().global_block()

897
            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)
M
minqiyang 已提交
898

899 900 901
            # prepare input variable
            inputs = self.append_input_output_for_dygraph(op_proto, self.inputs,
                                                          True, False, block)
M
minqiyang 已提交
902
            # prepare output variable
903 904 905 906 907 908 909 910 911
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
912

M
minqiyang 已提交
913 914 915 916
            block.append_op(
                type=self.op_type,
                inputs=inputs,
                outputs=outputs,
917
                attrs=attrs_outputs if hasattr(self, "attrs") else None)
M
minqiyang 已提交
918
            return outputs
919

920 921 922 923 924 925
    def _calc_output(self,
                     place,
                     parallel=False,
                     no_check_set=None,
                     loss=None,
                     enable_inplace=None,
926
                     for_inplace_test=None):
927 928
        program = Program()
        block = program.global_block()
929
        op = self._append_ops(block)
930 931 932 933 934

        inputs = self._get_inputs(block)
        outputs = self._get_outputs(block)
        feed_map = self.feed_var(inputs, place)

935
        if for_inplace_test:
C
cc 已提交
936 937
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
938 939
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
940 941
            for out_name in op.output_arg_names:
                var = block.var(out_name)
942 943
                if 0 in var.shape:
                    var.persistable = True
944
        original_program = program
945 946
        if parallel:
            use_cuda = False
947
            if isinstance(place, fluid.CUDAPlace):
948
                use_cuda = True
949 950 951
            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                loss_name=loss.name if loss else None, places=place)
            program = compiled_prog
952 953 954 955
        fetch_list = getattr(self, "fetch_list", [])
        # if the fetch_list is customized by user, we use it directly.
        # if not, fill the fetch_list by the user configured outputs in test.
        if len(fetch_list) == 0:
M
minqiyang 已提交
956
            for var_name, var in six.iteritems(outputs):
957 958
                if no_check_set is not None and var_name in no_check_set:
                    continue
Y
Yang Yang(Tony) 已提交
959 960
                if isinstance(var, list):
                    for v in var:
961
                        fetch_list.append(v.name)
Y
Yang Yang(Tony) 已提交
962
                else:
963
                    fetch_list.append(var.name)
964 965 966 967
        # if the fetch_list still empty, fill the fetch_list by the operator output.
        if len(fetch_list) == 0:
            for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                fetch_list.append(str(out_name))
968 969 970 971 972 973 974 975 976

        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace

            compiled_prog = fluid.CompiledProgram(program).with_data_parallel(
                build_strategy=build_strategy, places=place)
            program = compiled_prog

977
        executor = Executor(place)
978 979 980 981
        outs = executor.run(program,
                            feed=feed_map,
                            fetch_list=fetch_list,
                            return_numpy=False)
982 983
        self.op = op
        self.program = original_program
984 985 986 987
        if for_inplace_test:
            return outs, fetch_list, feed_map, original_program, op.desc
        else:
            return outs, fetch_list
Y
Yang Yang(Tony) 已提交
988

989 990 991 992 993 994 995 996 997
    def _compare_expect_and_actual_outputs(self,
                                           place,
                                           fetch_list,
                                           expect_outs,
                                           actual_outs,
                                           inplace_atol=None):
        """Compare expect outs and actual outs of an tested op.

        Args:
C
cc 已提交
998
            place (CPUPlace | CUDAPlace): The place where the op runs.
999 1000 1001 1002 1003 1004 1005 1006 1007 1008
            fetch_list (list): The outputs of tested op.
            expect_outs (list): The expect outs of tested op.
            actual_outs (list): The actual outs of tested op.
            inplace_atol (float): The tolerable error, only set when tested op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None.
        """
        # compare expect_outs and actual_outs
        for i, name in enumerate(fetch_list):
C
cc 已提交
1009
            # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1010 1011 1012
            # computational consistency.
            # When inplace_atol is not None, the inplace check uses numpy.allclose
            # to check inplace result instead of numpy.array_equal.
1013 1014
            expect_out = np.array(expect_outs[i])
            actual_out = np.array(actual_outs[i])
1015 1016 1017
            if inplace_atol is not None:
                self.assertTrue(
                    np.allclose(
1018
                        expect_out, actual_out, atol=inplace_atol),
1019 1020
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
1021 1022
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__)
1023 1024
            else:
                self.assertTrue(
1025
                    np.array_equal(expect_out, actual_out),
1026 1027
                    "Output (" + name + ") has diff at " + str(place) +
                    " when using and not using inplace" + "\nExpect " +
1028 1029
                    str(expect_out) + "\n" + "But Got" + str(actual_out) +
                    " in class " + self.__class__.__name__ + '\n')
1030 1031 1032 1033 1034 1035 1036 1037

    def _construct_grad_program_from_forward(self, fwd_program, grad_op_desc,
                                             op_grad_to_var):
        """Generate grad_program which contains the grad_op.

        Args:
            fwd_program (tuple): The program that contains grad_op_desc's corresponding forward op.
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1038
            op_grad_to_var (dict): The relation of variables in grad op and its forward op.
1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064

        Returns:
            grad_program (program): The program which contains the grad_op.
        """
        grad_program = Program()
        grad_block = grad_program.global_block()
        new_op_desc = grad_block.desc.append_op()
        new_op_desc.copy_from(grad_op_desc)
        grad_program._sync_with_cpp()

        # Create grad vars based on fwd vars (shape and dtype)
        for arg in grad_op_desc.input_arg_names(
        ) + grad_op_desc.output_arg_names():
            fwd_var_name = op_grad_to_var.get(arg, None)
            if fwd_var_name is None:
                fwd_var_name = arg
            fwd_var = fwd_program.global_block().vars.get(fwd_var_name)
            assert fwd_var is not None, "{} cannot be found".format(
                fwd_var_name)
            grad_var = grad_block.create_var(
                name=arg,
                dtype=fwd_var.dtype,
                shape=fwd_var.shape,
                type=fwd_var.type,
                persistable=False)

C
cc 已提交
1065 1066
            # Some variables' tensors hold no buffer (tensor's _holder is NULL), like XShape in reshape2 op,
            # and the shapes of those variables contain 0 (eg. Xshape.shape = [0, 2, 5]).
1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
            # Set persistable for those variables in order to get them from global_scope for inplace grad test directly other than feed them,
            # since feed op calls check_memory_size() which fails when tensor's holder_ is NULL.
            if 0 in grad_var.shape:
                grad_var.persistable = True
        grad_program._sync_with_cpp()
        return grad_program

    def _construct_grad_feed_map_from_forward(self, place, fwd_res,
                                              grad_op_desc, op_grad_to_var):
        """Generate grad_feed_map for grad_program.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1082
            place (CPUPlace | CUDAPlace): The place where the op runs.
1083 1084 1085
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc)
            grad_op_desc (OpDesc): The OpDesc of grad op.
C
cc 已提交
1086
            op_grad_to_var (dict): The relation of variables in grad op and its fwd_op.
1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117

        Returns:
            grad_feed_map (dict): The feed_map of grad_op.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
        p = core.Place()
        p.set_place(place)
        grad_feed_map = {}
        for arg in grad_op_desc.input_arg_names():
            if arg in fwd_feed_map.keys():
                grad_feed_map[arg] = fwd_feed_map[arg]._copy(p)
            else:
                fwd_var_name = op_grad_to_var.get(arg, None)
                if fwd_var_name is None:
                    fwd_var_name = arg

                for i, out_name in enumerate(fwd_fetch_list):
                    if out_name == fwd_var_name:
                        # don't feed variables whose tensors hold no buffer (shape contains 0 like shape = [0,2,5] and holder_ is NULL), like XShape in reshape2 op.
                        # get them from global_scope directly since we have set them persistable in fwd execution
                        if 0 in fwd_program.global_block().var(out_name).shape:
                            continue
                        else:
                            grad_feed_map[arg] = fwd_outs[i]._copy(p)
        return grad_feed_map

    def _get_need_run_ops(self, op_desc, fwd_op_desc=None):
        """Postorder traversal of the 'grad' tree to get all ops that need to run during inplace test.
        An op needs to run druing inplace check if,
        (1) it has infer_inplace,
        (2) it has infer_inplace in its grad descendants. (since we need its outputs as to construct its grad's inputs)
C
cc 已提交
1118

1119
        Args:
C
cc 已提交
1120 1121
            op_desc (OpDesc): The op_desc of current op.
            fwd_op_desc (OpDesc): The op_desc of current op's forward op, None if current op has no forward op.
1122
                Eg. relu's fwd_op is None, relu_grad's fwd_op is relu, relu_grad_grad's fwd_op is relu_grad, etc.
C
cc 已提交
1123

1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137
        Returns:
            need_run_ops (list[(op_desc, fwd_op_desc)]): The ops that need to run during inplace test.
        """
        need_run_ops = []
        visited_ops = []

        def _dfs_grad_op(op_desc, fwd_op_desc=None):
            visited_ops.append(op_desc.type())
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            has_grad_op_maker = fluid.core.has_grad_op_maker(op_desc.type())
            has_infer_inplace_in_grad_descendants = False
            if not has_grad_op_maker:
                has_infer_inplace_in_descendants = False
            else:
C
cc 已提交
1138
                # get grad_op_desc
1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161
                grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(
                    op_desc, set(), [])
                if not grad_op_desc_list:
                    has_infer_inplace_in_grad_descendants = False
                else:
                    for i, grad_op_desc in enumerate(grad_op_desc_list):
                        if grad_op_desc.type(
                        ) not in visited_ops and _dfs_grad_op(
                                grad_op_desc, fwd_op_desc=op_desc):
                            has_infer_inplace_in_grad_descendants = True
            if has_infer_inplace or has_infer_inplace_in_grad_descendants:
                need_run_ops.append((op_desc, fwd_op_desc))
                return True
            else:
                return False

        _dfs_grad_op(op_desc, fwd_op_desc=fwd_op_desc)
        return need_run_ops

    def _check_forward_inplace(self,
                               place,
                               no_check_set=None,
                               inplace_atol=None):
1162
        """Check the inplace correctness of given op (self.op_type).
1163
        Run the op twice with same inputs, one enable inplace and another disable, compare their outputs.
C
cc 已提交
1164

1165
        Args:
C
cc 已提交
1166
            place (CPUPlace | CUDAPlace): The place where the op runs.
1167 1168 1169 1170
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1171 1172
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1173 1174
        """
        # _calc_output() returns in the form tuple(outs, fetch_list, feed_map, program, op_desc) when for_inplace_test=True.
1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
        expect_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=False,
            for_inplace_test=True)
        actual_res = self._calc_output(
            place,
            no_check_set=no_check_set,
            enable_inplace=True,
            for_inplace_test=True)
1185
        # compare expect_outs and actual_outs
1186 1187 1188 1189 1190 1191
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204
        return expect_res

    def _calc_grad_output(self,
                          place,
                          fwd_res,
                          grad_op_desc,
                          enable_inplace=None):
        """Calculate grad_output for given grad_op_desc.

        since we don`t really check gradient accuracy, but check the consistency when using and not using inplace,
        we use fwd outs (also inputs sometimes) to construct grad inputs.

        Args:
C
cc 已提交
1205
            place (CPUPlace | CUDAPlace): The place where the op runs.
1206 1207 1208 1209 1210 1211 1212 1213 1214
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            enable_inplace (bool): Enable inplace or not.

        Returns:
            res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given grad_op_desc.
        """
        fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc = fwd_res
1215
        grad_op_desc_list, op_grad_to_var = core.get_grad_op_desc(fwd_op_desc,
1216
                                                                  set(), [])
1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241
        grad_program = self._construct_grad_program_from_forward(
            fwd_program, grad_op_desc, op_grad_to_var)
        grad_feed_map = self._construct_grad_feed_map_from_forward(
            place, fwd_res, grad_op_desc, op_grad_to_var)
        grad_fetch_list = grad_op_desc.output_arg_names()
        exe = Executor(place)
        program = grad_program
        if enable_inplace is not None:
            build_strategy = fluid.BuildStrategy()
            build_strategy.enable_inplace = enable_inplace
            compiled_program = fluid.CompiledProgram(
                grad_program).with_data_parallel(
                    loss_name="", build_strategy=build_strategy, places=place)
            program = compiled_program
        outs = exe.run(program,
                       feed=grad_feed_map,
                       fetch_list=grad_fetch_list,
                       return_numpy=False)
        return outs, grad_fetch_list, grad_feed_map, grad_program, grad_op_desc

    def _check_grad_inplace(self,
                            place,
                            fwd_res,
                            grad_op_desc,
                            inplace_atol=None):
1242
        """Check the inplace correctness of given grad_op_desc.
1243 1244 1245 1246 1247 1248

        Run the grad op twice with same inputs, one enable inplace and another disable, compare their outputs.
        It works like _check_forward_inplace, but the way to construct program and feed_map differs.
        So we define a new function for grad, grad_grad, etc.

        Args:
C
cc 已提交
1249
            place (CPUPlace | CUDAPlace): The place where the op runs.
1250 1251 1252 1253 1254 1255
            fwd_res (tuple): The outputs of its forward op, in the same form as returns of _calc_outputs() when for_inplace_test is True.
                i.e., tuple(fwd_outs, fwd_fetch_list, fwd_feed_map, fwd_program, fwd_op_desc).
            grad_op_desc (OpDesc): The OpDesc of grad op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
C
cc 已提交
1256 1257
            expect_res (tuple(outs, fetch_list, feed_map, program, op_desc)): The results of given op.
                We return this to construct grad_program and grad_feed_map for grad inplace check.
1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269
        """
        expect_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=False)
        actual_res = self._calc_grad_output(
            place, fwd_res, grad_op_desc, enable_inplace=True)
        self._compare_expect_and_actual_outputs(
            place,
            expect_res[1],
            expect_res[0],
            actual_res[0],
            inplace_atol=inplace_atol)
        return expect_res
1270

1271 1272 1273 1274 1275 1276 1277 1278 1279 1280
    def check_inplace_output_with_place(self,
                                        place,
                                        no_check_set=None,
                                        inplace_atol=None):
        """Chech the inplace correctness of given op, its grad op, its grad_grad op, etc.

        (1) Get all ops need to run. (see conditions in _get_need_run_ops())
        (2) Run op in need_run_ops, and do inplace check if it has infer_inplace.

        Args:
C
cc 已提交
1281
            place (CPUPlace | CUDAPlace): The place where the op runs.
1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296
            no_check_set (list): The names of outputs that needn't check, like XShape of reshape op.
            inplace_atol (float): The tolerable error, only set when op doesn't ensure computational consistency, like group_norm op.

        Returns:
            None
        """
        has_infer_inplace = fluid.core.has_infer_inplace(self.op_type)
        has_grad_op_maker = fluid.core.has_grad_op_maker(self.op_type)

        fwd_res = self._calc_output(
            place, no_check_set=no_check_set, for_inplace_test=True)
        op_desc = fwd_res[4]
        need_run_ops = self._get_need_run_ops(op_desc)

        res = {}
1297 1298
        if hasattr(self, 'attrs') and bool(self.attrs.get('use_xpu', False)):
            return
1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311
        for op_desc, father_op_desc in reversed(need_run_ops):
            # The first one is the forward op
            has_infer_inplace = fluid.core.has_infer_inplace(op_desc.type())
            if op_desc.type() == self.op_type:
                if has_infer_inplace:
                    res[op_desc] = self._check_forward_inplace(
                        place,
                        no_check_set=no_check_set,
                        inplace_atol=inplace_atol)
                else:
                    res[op_desc] = self._calc_output(
                        place, no_check_set=no_check_set, for_inplace_test=True)
            else:
1312 1313
                # TODO(zhiqiu): enhance inplace_grad test for ops (sum and activation) using mkldnn
                # skip op that use_mkldnn currently
1314
                flags_use_mkldnn = fluid.core.globals()["FLAGS_use_mkldnn"]
1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326
                attrs_use_mkldnn = hasattr(
                    self,
                    'attrs') and bool(self.attrs.get('use_mkldnn', False))
                if flags_use_mkldnn or attrs_use_mkldnn:
                    warnings.warn(
                        "check inplace_grad for ops using mkldnn is not supported"
                    )
                    continue
                if has_infer_inplace:
                    fwd_res = res[father_op_desc]
                    res[op_desc] = self._check_grad_inplace(
                        place, fwd_res, op_desc, inplace_atol=inplace_atol)
1327
                else:
1328 1329
                    res[op_desc] = self._calc_grad_output(place, fwd_res,
                                                          op_desc)
1330

1331 1332
    def check_output_with_place(self,
                                place,
1333
                                atol=0,
1334
                                no_check_set=None,
M
minqiyang 已提交
1335
                                equal_nan=False,
1336
                                check_dygraph=True,
1337 1338
                                inplace_atol=None,
                                check_eager=False):
1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372
        def find_imperative_actual(target_name, dygraph_outs, place):
            for name in dygraph_outs:
                if name == target_name:
                    return dygraph_outs[name][0]
                var_list = dygraph_outs[name]
                for i, var in enumerate(var_list):
                    if var.name == target_name:
                        return dygraph_outs[name][i]
            self.assertTrue(False, "Found failed {} {}".format(
                dygraph_outs.keys(), target_name))

        def find_actual(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            self.assertTrue(
                len(found) == 1, "Found {} {}".format(len(found), target_name))
            return found[0]

        class Checker(object):
            """ base class for check with self.outputs.
                currently don't support check between checkers.
            """

            def __init__(self, op_test, expect_dict):
                """ expect_dict is the self.outputs
                    support : {str: [numpy]} and {str: [(str, numpy), (str, numpy)]}
                """
                self.expects = expect_dict
                self.checker_name = "checker"
                self.op_test = op_test  # stop the op_test object.
                self.op_type = op_test.op_type

1373 1374 1375
            def init(self):
                pass

1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406
            def convert_uint16_to_float(self, actual_np, expect_np):
                raise NotImplementedError("base class, not implement!")

            def calculate_output(self):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                pass

            def _is_skip_name(self, name):
                if name not in self.expects:
                    return True
                if no_check_set is not None and name in no_check_set:
                    return True
                return False

            def find_actual_value(self, name):
                """ return: (actual_tensor(var_base), actual_numpy)
                """
                raise NotImplementedError("base class, not implement!")

            def _compare_numpy(self, name, actual_np, expect_np):
                self.op_test.assertTrue(
                    np.allclose(
                        actual_np,
                        expect_np,
                        atol=atol,
                        rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
                        equal_nan=equal_nan),
                    "Output (" + name + ") has diff at " + str(place) + " in " +
1407
                    self.checker_name)
1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                raise NotImplementedError("base class, not implement!")

            def compare_single_output_with_expect(self, name, expect):
                actual, actual_np = self.find_actual_value(name)
                expect_np = expect[0] \
                    if isinstance(expect, tuple) else expect
                actual_np, expect_np = self.convert_uint16_to_float_ifneed(
                    actual_np, expect_np)
                # NOTE(zhiqiu): np.allclose([], [1.]) returns True
                # see details: https://stackoverflow.com/questions/38331703/why-does-numpys-broadcasting-sometimes-allow-comparing-arrays-of-different-leng
                if expect_np.size == 0:
1423
                    self.op_test.assertTrue(actual_np.size == 0)  # }}}
1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450
                self._compare_numpy(name, actual_np, expect_np)
                if isinstance(expect, tuple):
                    self._compare_list(name, actual, expect)

            def compare_outputs_with_expects(self):
                for out_name, out_dup in Operator.get_op_outputs(self.op_type):
                    if self._is_skip_name(out_name): continue
                    if out_dup:
                        # if self.output = {'name': [(subname, Tensor), (subname, Tensor)]}
                        sub_out = self.expects[out_name]
                        if not isinstance(sub_out, list):
                            raise AssertionError("sub_out type %s is not list",
                                                 type(sub_out))
                        for item in sub_out:
                            sub_out_name, expect = item[0], item[1]
                            self.compare_single_output_with_expect(sub_out_name,
                                                                   expect)
                    else:
                        expect = self.expects[out_name]
                        self.compare_single_output_with_expect(out_name, expect)

            def check(self):
                """
                return None means ok, raise Error means failed.

                the main enter point of Checker class
                """
1451
                self.init()
1452 1453 1454 1455
                self.calculate_output()
                self.compare_outputs_with_expects()

        class StaticChecker(Checker):
1456 1457 1458
            def init(self):
                self.checker_name = "static checker"

1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497
            def calculate_output(self):
                outs, fetch_list = self.op_test._calc_output(
                    place, no_check_set=no_check_set)
                self.outputs = outs
                self.fetch_list = fetch_list

            def find_actual_value(self, name):
                idx = find_actual(name, self.fetch_list)
                actual = self.outputs[idx]
                actual_t = np.array(actual)
                return actual, actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                """
                judge whether convert current output and expect to uint16.
                return True | False
                """
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
                        np.float32, np.float64
                ]:
                    actual_np = convert_uint16_to_float(actual_np)
                    self.rtol = 1.e-2
                else:
                    self.rtol = 1.e-5
                if expect_np.dtype == np.uint16 and actual_np.dtype == np.uint16:
                    nonlocal atol
                    expect_np = convert_uint16_to_float(expect_np)
                    actual_np = convert_uint16_to_float(actual_np)
                    atol = max(atol, 0.03)
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                self.op_test.assertListEqual(
                    actual.recursive_sequence_lengths(), expect[1],
                    "Output (" + name + ") has different lod at " + str(place))

        class DygraphChecker(Checker):
1498 1499 1500
            def init(self):
                self.checker_name = "dygraph checker"

1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513
            def calculate_output(self):
                self.outputs = self.op_test._calc_dygraph_output(
                    place, no_check_set=no_check_set)

            def find_actual_value(self, name):
                with fluid.dygraph.base.guard(place=place):
                    imperative_actual = find_imperative_actual(
                        name, self.outputs, place)
                    imperative_actual_t = np.array(imperative_actual.value()
                                                   .get_tensor())
                    return imperative_actual, imperative_actual_t

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
1514 1515 1516 1517 1518 1519
                if actual_np.dtype == np.uint16 and expect_np.dtype in [
                        np.float32, np.float64
                ]:
                    self.rtol = 1.e-2
                else:
                    self.rtol = 1.e-5
1520 1521 1522 1523
                if self.op_test.is_bfloat16_op():
                    if actual_np.dtype == np.uint16:
                        actual_np = convert_uint16_to_float(actual_np)
                    if expect_np.dtype == np.uint16:
X
xiongkun 已提交
1524
                        expect_np = convert_uint16_to_float(expect_np)
1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551
                return actual_np, expect_np

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                with fluid.dygraph.base.guard(place=place):
                    self.op_test.assertListEqual(
                        actual.value().get_tensor()
                        .recursive_sequence_lengths(), expect[1],
                        "Output (" + name + ") has different lod at " +
                        str(place) + " in dygraph mode")

            def _compare_numpy(self, name, actual_np, expect_np):
                if six.moves.reduce(lambda x, y: x * y, actual_np.shape,
                                    1) == 0 and six.moves.reduce(
                                        lambda x, y: x * y, expect_np.shape,
                                        1) == 0:
                    pass
                else:
                    self.op_test.assertTrue(
                        np.allclose(
                            actual_np,
                            expect_np,
                            atol=atol,
                            rtol=self.rtol if hasattr(self, 'rtol') else 1e-5,
                            equal_nan=equal_nan),
                        "Output (" + name + ") has diff at " + str(place) +
1552
                        " in " + self.checker_name)
1553 1554

        class EagerChecker(DygraphChecker):
1555 1556 1557
            def init(self):
                self.checker_name = "eager checker"

1558 1559 1560
            def calculate_output(self):
                # we only check end2end api when check_eager=True
                with _test_eager_guard():
1561
                    self.is_python_api_test = True
1562 1563 1564
                    eager_dygraph_outs = self.op_test._calc_python_api_output(
                        place)
                    if eager_dygraph_outs is None:
X
xiongkun 已提交
1565
                        self.is_python_api_test = False
1566
                        # missing KernelSignature, fall back to eager middle output.
1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589
                        eager_dygraph_outs = self.op_test._calc_dygraph_output(
                            place, no_check_set=no_check_set)
                self.outputs = eager_dygraph_outs

            def _compare_numpy(self, name, actual_np, expect_np):
                with _test_eager_guard():
                    super()._compare_numpy(name, actual_np, expect_np)

            def convert_uint16_to_float_ifneed(self, actual_np, expect_np):
                with _test_eager_guard():
                    return super().convert_uint16_to_float_ifneed(actual_np,
                                                                  expect_np)

            def find_actual_value(self, name):
                with _test_eager_guard():
                    return super().find_actual_value(name)

            def _compare_list(self, name, actual, expect):
                """ if expect is a tuple, we need to compare list.
                """
                with _test_eager_guard():
                    super()._compare_list(name, actual, expect)

X
xiongkun 已提交
1590 1591 1592 1593 1594 1595 1596
            def _is_skip_name(self, name):
                # if in final state and kernel signature don't have name, then skip it.
                if self.is_python_api_test and hasattr(
                        self.op_test, "python_out_sig"
                ) and name not in self.op_test.python_out_sig:
                    return True
                return super()._is_skip_name(name)
1597

X
xiongkun 已提交
1598 1599
        # set some flags by the combination of arguments. 
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
1600 1601 1602 1603
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_OUTPUT_THRESHOLD_OP_LIST:
            atol = 0

1604
        if self.is_bfloat16_op():
Y
Yiqun Liu 已提交
1605 1606
            if self.is_mkldnn_op():
                check_dygraph = False
1607
                check_eager = False
Y
Yiqun Liu 已提交
1608 1609 1610 1611 1612
                if hasattr(self, 'force_fp32_output') and getattr(
                        self, 'force_fp32_output'):
                    atol = 1e-2
                else:
                    atol = 2
1613
            else:
1614
                atol = 1e-1
1615

1616 1617 1618
        if no_check_set is not None:
            if self.op_type not in no_check_set_white_list.no_check_set_white_list:
                raise AssertionError(
X
xiongkun 已提交
1619
                    "no_check_set of op %s must be set to None." % self.op_type)
1620 1621 1622
        static_checker = StaticChecker(self, self.outputs)
        static_checker.check()
        outs, fetch_list = static_checker.outputs, static_checker.fetch_list
L
lujun 已提交
1623
        if check_dygraph:
1624 1625 1626
            # always enable legacy dygraph
            g_enable_legacy_dygraph()

1627 1628 1629
            dygraph_checker = DygraphChecker(self, self.outputs)
            dygraph_checker.check()
            dygraph_outs = dygraph_checker.outputs
1630 1631
            # yield the original state
            g_disable_legacy_dygraph()
1632
        if check_eager:
1633 1634 1635
            eager_checker = EagerChecker(self, self.outputs)
            eager_checker.check()
            eager_dygraph_outs = eager_checker.outputs
1636

C
cc 已提交
1637
        # Note(zhiqiu): inplace_atol should be only set when op doesn't ensure
L
Leo Chen 已提交
1638 1639
        # computational consistency.
        # For example, group_norm uses AtomicAdd on CUDAPlace, which do not ensure
C
cc 已提交
1640
        # computation order when multiple threads write the same address. So the
L
Leo Chen 已提交
1641 1642 1643
        # result of group_norm is non-deterministic when datatype is float.
        # When inplace_atol is not None, the inplace check uses numpy.allclose
        # to check inplace result instead of numpy.array_equal.
1644 1645
        if inplace_atol is not None:
            warnings.warn(
L
Leo Chen 已提交
1646 1647
                "inplace_atol should only be set when op doesn't ensure computational consistency, please check it!"
            )
1648
        # Check inplace for given op, its grad op, its grad_grad op, etc.
C
cc 已提交
1649
        # No effect on original OpTest
1650
        # Currently not support ParallelExecutor on XPUPlace.
1651
        if not paddle.is_compiled_with_xpu(
1652 1653
        ) and not paddle.is_compiled_with_npu(
        ) and not paddle.is_compiled_with_mlu():
1654 1655
            self.check_inplace_output_with_place(
                place, no_check_set=no_check_set, inplace_atol=inplace_atol)
1656

1657 1658 1659
        if check_eager:
            return outs, dygraph_outs, eager_dygraph_outs, fetch_list
        elif check_dygraph:
1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706
            return outs, dygraph_outs, fetch_list
        else:
            return outs, fetch_list

    def check_compile_vs_runtime(self, fetch_list, fetch_outs):
        def find_fetch_index(target_name, fetch_list):
            found = [
                i for i, var_name in enumerate(fetch_list)
                if var_name == target_name
            ]
            if len(found) == 0:
                return -1
            else:
                self.assertTrue(
                    len(found) == 1,
                    "Found {} {}".format(len(found), target_name))
                return found[0]

        for name in self.op.desc.output_names():
            var_names = self.op.desc.output(name)
            for var_name in var_names:
                i = find_fetch_index(var_name, fetch_list)
                if i == -1:
                    # The output is dispensiable or intermediate.
                    break
                out = fetch_outs[i]
                if isinstance(out, core.LoDTensor):
                    lod_level_runtime = len(out.lod())
                else:
                    if isinstance(out, core.LoDTensorArray):
                        warnings.warn(
                            "The check of LoDTensorArray's lod_level is not implemented now!"
                        )
                    lod_level_runtime = 0

                var = self.program.global_block().var(var_name)
                if var.type == core.VarDesc.VarType.LOD_TENSOR:
                    lod_level_compile = var.lod_level
                else:
                    lod_level_compile = 0
                self.assertEqual(
                    lod_level_compile, lod_level_runtime,
                    "The lod_level of Output (" + name +
                    ") is different between compile-time and runtime (" +
                    str(lod_level_compile) + " vs " + str(lod_level_runtime) +
                    ")")

1707
    def _get_places(self):
D
dzhwinter 已提交
1708 1709 1710 1711 1712 1713
        if self.dtype == np.float16:
            if core.is_compiled_with_cuda() and core.op_support_gpu(
                    self.op_type):
                place = core.CUDAPlace(0)
                if core.is_float16_supported(place):
                    return [place]
W
Wu Yi 已提交
1714 1715
                else:
                    return []
D
dzhwinter 已提交
1716 1717
            else:
                return []
1718
        places = [fluid.CPUPlace()]
1719 1720 1721
        cpu_only = self._cpu_only if hasattr(self, '_cpu_only') else False
        if core.is_compiled_with_cuda() and core.op_support_gpu(self.op_type)\
           and not cpu_only:
D
dzhwinter 已提交
1722
            places.append(core.CUDAPlace(0))
1723 1724
        return places

M
minqiyang 已提交
1725 1726 1727 1728
    def check_output(self,
                     atol=1e-5,
                     no_check_set=None,
                     equal_nan=False,
1729
                     check_dygraph=True,
1730 1731
                     inplace_atol=None,
                     check_eager=False):
1732
        self.__class__.op_type = self.op_type
Y
Yiqun Liu 已提交
1733
        if self.is_mkldnn_op():
1734
            self.__class__.use_mkldnn = True
C
cc 已提交
1735

Y
Yiqun Liu 已提交
1736
        if self.is_xpu_op():
1737 1738
            self.__class__.use_xpu = True

1739
        places = self._get_places()
Q
qijun 已提交
1740
        for place in places:
1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752
            res = self.check_output_with_place(
                place,
                atol,
                no_check_set,
                equal_nan,
                check_dygraph,
                inplace_atol,
                check_eager=check_eager)
            if check_eager:
                assert check_dygraph == True
                outs, dygraph_outs, eager_dygraph_outs, fetch_list = res
            elif check_dygraph:
1753 1754 1755
                outs, dygraph_outs, fetch_list = res
            else:
                outs, fetch_list = res
1756
            if self.op_type not in compile_vs_runtime_white_list.COMPILE_RUN_OP_WHITE_LIST:
1757
                self.check_compile_vs_runtime(fetch_list, outs)
Q
qijun 已提交
1758

P
pangyoki 已提交
1759
    def check_output_customized(self, checker, custom_place=None):
1760
        places = self._get_places()
P
pangyoki 已提交
1761 1762
        if custom_place:
            places.append(custom_place)
1763 1764 1765
        for place in places:
            outs = self.calc_output(place)
            outs = [np.array(out) for out in outs]
1766
            outs.sort(key=len)
1767 1768
            checker(outs)

1769 1770 1771 1772 1773 1774
    def check_output_with_place_customized(self, checker, place):
        outs = self.calc_output(place)
        outs = [np.array(out) for out in outs]
        outs.sort(key=len)
        checker(outs)

D
Dun 已提交
1775 1776
    def _assert_is_close(self, numeric_grads, analytic_grads, names,
                         max_relative_error, msg_prefix):
M
minqiyang 已提交
1777
        for a, b, name in six.moves.zip(numeric_grads, analytic_grads, names):
1778 1779 1780 1781 1782 1783
            # It asserts np.abs(a - b) / np.abs(a) < max_relative_error, in which
            # max_relative_error is 1e-7. According to the value of np.abs(a), we
            # change np.abs(a) to achieve dynamic threshold. For example, if
            # the value of np.abs(a) is between 1e-10 and 1e-8, we set np.abs(a)*=1e4.
            # Therefore, it asserts np.abs(a - b) / (np.abs(a)*1e4) < max_relative_error,
            # which is the same as np.abs(a - b) / np.abs(a) < max_relative_error*1e4.
1784
            abs_a = np.abs(a)
1785 1786 1787 1788 1789
            if self.dtype == np.float64 and \
                self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
                abs_a[abs_a < 1e-10] = 1e-3
                abs_a[np.logical_and(abs_a > 1e-10, abs_a <= 1e-8)] *= 1e4
                abs_a[np.logical_and(abs_a > 1e-8, abs_a <= 1e-6)] *= 1e2
1790 1791
            elif self.is_bfloat16_op():
                abs_a[abs_a < 1e-2] = 1
1792 1793
            else:
                abs_a[abs_a < 1e-3] = 1
1794 1795 1796 1797 1798 1799

            diff_mat = np.abs(a - b) / abs_a
            max_diff = np.max(diff_mat)

            def err_msg():
                offset = np.argmax(diff_mat > max_relative_error)
1800 1801 1802
                return ("Operator %s error, %s variable %s (shape: %s, dtype: %s) max gradient diff %e over limit %e, "
                    "the first error element is %d, expected %e, but got %e.") \
                    % (self.op_type, msg_prefix, name, str(a.shape), self.dtype, max_diff, max_relative_error,
1803
                    offset, a.flatten()[offset], b.flatten()[offset])
1804 1805 1806

            self.assertLessEqual(max_diff, max_relative_error, err_msg())

1807 1808 1809 1810 1811 1812 1813
    def _check_grad_helper(self):
        self.infer_dtype_from_inputs_outputs(self.inputs, self.outputs)
        self.__class__.op_type = self.op_type
        self.__class__.exist_check_grad = True
        if self.dtype == np.float64:
            self.__class__.exist_fp64_check_grad = True

1814 1815
    def check_grad(self,
                   inputs_to_check,
Y
Yancey 已提交
1816
                   output_names,
1817
                   no_grad_set=None,
1818
                   numeric_grad_delta=0.005,
1819
                   in_place=False,
Q
Qiao Longfei 已提交
1820
                   max_relative_error=0.005,
1821
                   user_defined_grads=None,
1822
                   user_defined_grad_outputs=None,
1823 1824
                   check_dygraph=True,
                   check_eager=False):
1825
        self._check_grad_helper()
1826
        places = self._get_places()
1827
        for place in places:
1828
            self.check_grad_with_place(
1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839
                place,
                inputs_to_check,
                output_names,
                no_grad_set,
                numeric_grad_delta,
                in_place,
                max_relative_error,
                user_defined_grads,
                user_defined_grad_outputs,
                check_dygraph,
                check_eager=check_eager)
1840 1841 1842 1843 1844 1845 1846 1847 1848

    def check_grad_with_place(self,
                              place,
                              inputs_to_check,
                              output_names,
                              no_grad_set=None,
                              numeric_grad_delta=0.005,
                              in_place=False,
                              max_relative_error=0.005,
1849
                              user_defined_grads=None,
1850
                              user_defined_grad_outputs=None,
1851
                              check_dygraph=True,
1852 1853
                              numeric_place=None,
                              check_eager=False):
1854
        self.scope = core.Scope()
Q
qijun 已提交
1855
        op_inputs = self.inputs if hasattr(self, "inputs") else dict()
1856
        op_outputs = self.outputs if hasattr(self, "outputs") else dict()
Q
qijun 已提交
1857
        op_attrs = self.attrs if hasattr(self, "attrs") else dict()
P
phlrain 已提交
1858

Y
Yiqun Liu 已提交
1859 1860
        self._check_grad_helper()
        if self.is_bfloat16_op() and self.is_mkldnn_op():
1861
            check_dygraph = False
1862
            check_eager = False
1863

1864 1865 1866 1867
        if self.dtype == np.float64 and \
            self.op_type not in op_threshold_white_list.NEED_FIX_FP64_CHECK_GRAD_THRESHOLD_OP_LIST:
            numeric_grad_delta = 1e-5
            max_relative_error = 1e-7
1868

P
phlrain 已提交
1869 1870 1871
        cache_list = None
        if hasattr(self, "cache_name_list"):
            cache_list = self.cache_name_list
1872 1873 1874 1875 1876 1877 1878

        # oneDNN numeric gradient should use CPU kernel
        use_onednn = False
        if "use_mkldnn" in op_attrs and op_attrs["use_mkldnn"] == True:
            op_attrs["use_mkldnn"] = False
            use_onednn = True

P
phlrain 已提交
1879 1880 1881 1882 1883 1884 1885
        self.op = create_op(
            self.scope,
            self.op_type,
            op_inputs,
            op_outputs,
            op_attrs,
            cache_list=cache_list)
Y
Yu Yang 已提交
1886

1887 1888 1889
        if use_onednn:
            op_attrs["use_mkldnn"] = True

1890 1891
        if no_grad_set is None:
            no_grad_set = set()
1892 1893
        else:
            if (self.op_type not in no_grad_set_white_list.NEED_TO_FIX_OP_LIST
1894 1895 1896
                ) and (
                    self.op_type not in no_grad_set_white_list.NOT_CHECK_OP_LIST
                ) and (not self.is_bfloat16_op()):
1897 1898
                raise AssertionError("no_grad_set must be None, op_type is " +
                                     self.op_type + " Op.")
1899

1900 1901 1902 1903 1904 1905 1906 1907
        for input_to_check in inputs_to_check:
            set_input(self.scope, self.op, self.inputs, place)
            tensor_to_check = self.scope.find_var(input_to_check).get_tensor()
            tensor_size = six.moves.reduce(lambda a, b: a * b,
                                           tensor_to_check.shape(), 1)
            if tensor_size < 100:
                self.__class__.input_shape_is_large = False

Y
Yancey 已提交
1908 1909 1910
        if not type(output_names) is list:
            output_names = [output_names]

1911 1912 1913
        if numeric_place is None:
            numeric_place = place

Q
Qiao Longfei 已提交
1914
        numeric_grads = user_defined_grads or [
1915
            get_numeric_gradient(
1916
                numeric_place,
1917 1918 1919 1920
                self.scope,
                self.op,
                self.inputs,
                input_to_check,
Y
Yancey 已提交
1921
                output_names,
1922
                delta=numeric_grad_delta,
C
chengduo 已提交
1923
                in_place=in_place) for input_to_check in inputs_to_check
1924
        ]
1925
        analytic_grads = self._get_gradient(inputs_to_check, place,
1926 1927
                                            output_names, no_grad_set,
                                            user_defined_grad_outputs)
1928 1929
        # comparison of bf16 results will happen as fp32
        # loop over list of grads and convert bf16 to fp32
1930
        fp32_analytic_grads = []
1931 1932 1933
        for grad in analytic_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1934
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1935 1936 1937 1938 1939 1940 1941
            fp32_analytic_grads.append(grad)
        analytic_grads = fp32_analytic_grads

        fp32_numeric_grads = []
        for grad in numeric_grads:
            if grad.dtype == np.uint16:
                grad = convert_uint16_to_float(grad)
1942
                max_relative_error = 0.04 if max_relative_error < 0.04 else max_relative_error
1943 1944
            fp32_numeric_grads.append(grad)
        numeric_grads = fp32_numeric_grads
1945

D
Dun 已提交
1946 1947 1948
        self._assert_is_close(numeric_grads, analytic_grads, inputs_to_check,
                              max_relative_error,
                              "Gradient Check On %s" % str(place))
Q
qijun 已提交
1949

1950
        if check_dygraph:
1951 1952 1953
            # ensure switch into legacy dygraph
            g_enable_legacy_dygraph()

1954 1955
            dygraph_grad = self._get_dygraph_grad(
                inputs_to_check, place, output_names, user_defined_grad_outputs,
1956
                no_grad_set, False)
1957 1958 1959 1960
            fp32_grads = []
            for grad in dygraph_grad:
                if grad.dtype == np.uint16:
                    grad = convert_uint16_to_float(grad)
1961
                    max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
1962 1963
                fp32_grads.append(grad)
            dygraph_grad = fp32_grads
1964 1965 1966
            self._assert_is_close(numeric_grads, dygraph_grad, inputs_to_check,
                                  max_relative_error,
                                  "Gradient Check On %s" % str(place))
1967 1968
            # ensure switch back eager dygraph
            g_disable_legacy_dygraph()
1969

1970
        if check_eager:
J
Jiabin Yang 已提交
1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985
            with fluid.dygraph.base.guard(place):
                with _test_eager_guard():
                    eager_dygraph_grad = self._get_dygraph_grad(
                        inputs_to_check, place, output_names,
                        user_defined_grad_outputs, no_grad_set, check_eager)
                    fp32_grads = []
                    for grad in eager_dygraph_grad:
                        if grad.dtype == np.uint16:
                            grad = convert_uint16_to_float(grad)
                            max_relative_error = 0.03 if max_relative_error < 0.03 else max_relative_error
                        fp32_grads.append(grad)
                    eager_dygraph_grad = fp32_grads
                    self._assert_is_close(numeric_grads, eager_dygraph_grad,
                                          inputs_to_check, max_relative_error,
                                          "Gradient Check On %s" % str(place))
1986

1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999
    def _find_var_in_dygraph(self, output_vars, name):
        if name in output_vars:
            return output_vars[name]
        else:
            for output_vars_index in output_vars:
                for output_vars_selected in output_vars[output_vars_index]:
                    if output_vars_selected.name == name:
                        return output_vars_selected

    def _get_dygraph_grad(self,
                          inputs_to_check,
                          place,
                          output_names,
2000
                          user_defined_grad_outputs=None,
2001 2002
                          no_grad_set=None,
                          check_eager=False):
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021
        with fluid.dygraph.base.guard(place=place):
            block = fluid.default_main_program().global_block()

            op_proto = OpProtoHolder.instance().get_op_proto(self.op_type)

            # prepare input variable
            inputs, inputs_grad_dict = self.append_input_output_for_dygraph(
                op_proto, self.inputs, True, True, block)

            # prepare output variable
            outputs = self.append_input_output_for_dygraph(
                op_proto, self.outputs, False, False, block)

            # prepare attrbutes
            attrs_outputs = {}
            if hasattr(self, "attrs"):
                for attrs_name in self.attrs:
                    if self.attrs[attrs_name] is not None:
                        attrs_outputs[attrs_name] = self.attrs[attrs_name]
2022

2023
            if check_eager:
X
xiongkun 已提交
2024 2025
                eager_outputs = self._calc_python_api_output(place, inputs,
                                                             outputs)
2026
            # if outputs is None, kernel sig is empty or other error is happens.
X
xiongkun 已提交
2027
            if not check_eager or eager_outputs is None:
2028 2029 2030 2031 2032
                block.append_op(
                    type=self.op_type,
                    inputs=inputs,
                    outputs=outputs,
                    attrs=attrs_outputs if hasattr(self, "attrs") else None)
X
xiongkun 已提交
2033 2034
            else:
                outputs = eager_outputs
2035

2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050
            if self.dtype == np.uint16:
                cast_inputs = self._find_var_in_dygraph(outputs,
                                                        output_names[0])
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                outputs = {output_names[0]: cast_outputs}

2051 2052 2053 2054 2055
            outputs_valid = {}
            for output_name in output_names:
                outputs_valid[output_name] = self._find_var_in_dygraph(
                    outputs, output_name)

2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089
            if user_defined_grad_outputs is None:
                if len(outputs_valid) == 1:
                    loss = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
                    for outputs_valid_key in outputs_valid:
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[outputs_valid_key]},
                            outputs={"Out": [loss]},
                            attrs=None)
                else:
                    avg_sum = []
                    for cur_loss in outputs_valid:
                        cur_avg_loss = block.create_var(
                            dtype=self.dtype,
                            type=core.VarDesc.VarType.LOD_TENSOR,
                            persistable=False,
                            stop_gradient=False)
                        block.append_op(
                            type="mean",
                            inputs={"X": outputs_valid[cur_loss]},
                            outputs={"Out": [cur_avg_loss]},
                            attrs=None)
                        avg_sum.append(cur_avg_loss)
                    loss_sum = block.create_var(
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
                        stop_gradient=False,
                        shape=[1])
2090
                    block.append_op(
2091 2092 2093
                        type='sum',
                        inputs={"X": avg_sum},
                        outputs={"Out": loss_sum},
2094
                        attrs=None)
2095
                    loss = block.create_var(
2096 2097 2098
                        dtype=self.dtype,
                        type=core.VarDesc.VarType.LOD_TENSOR,
                        persistable=False,
2099 2100
                        stop_gradient=False,
                        shape=[1])
2101
                    block.append_op(
2102 2103 2104 2105 2106
                        type='scale',
                        inputs={"X": loss_sum},
                        outputs={"Out": loss},
                        attrs={'scale': 1.0 / float(len(avg_sum))})
                loss.backward()
2107

2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119
                fetch_list_grad = []
                for inputs_to_check_name in inputs_to_check:
                    a = inputs_grad_dict[inputs_to_check_name].gradient()
                    fetch_list_grad.append(a)
                return fetch_list_grad
            else:
                # user_defined_grad_outputs here are numpy arrays
                if not isinstance(user_defined_grad_outputs, list):
                    user_defined_grad_outputs = [user_defined_grad_outputs]
                grad_outputs = []
                for grad_out_value in user_defined_grad_outputs:
                    grad_outputs.append(paddle.to_tensor(grad_out_value))
H
hong 已提交
2120
                # delete the inputs which no need to calculate grad                
C
chentianyu03 已提交
2121 2122 2123
                for no_grad_val in no_grad_set:
                    del (inputs[no_grad_val])

J
Jiabin Yang 已提交
2124
                if not _in_legacy_dygraph():
2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138
                    core.eager.run_backward(
                        fluid.layers.utils.flatten(outputs), grad_outputs,
                        False)
                    grad_inputs = []
                    for inputs_list in inputs.values():
                        for inp in inputs_list:
                            grad_inputs.append(inp.grad.numpy())
                    return grad_inputs
                else:
                    grad_inputs = paddle.grad(
                        outputs=fluid.layers.utils.flatten(outputs),
                        inputs=fluid.layers.utils.flatten(inputs),
                        grad_outputs=grad_outputs)
                    return [grad.numpy() for grad in grad_inputs]
2139

Y
Yu Yang 已提交
2140 2141 2142 2143 2144
    @staticmethod
    def _numpy_to_lod_tensor(np_value, lod, place):
        tensor = core.LoDTensor()
        tensor.set(np_value, place)
        if lod is not None:
2145
            tensor.set_recursive_sequence_lengths(lod)
Y
Yu Yang 已提交
2146 2147
        return tensor

K
Kexin Zhao 已提交
2148
    @staticmethod
K
Kexin Zhao 已提交
2149 2150
    def np_dtype_to_fluid_dtype(input):
        return input
K
Kexin Zhao 已提交
2151

D
dzhwinter 已提交
2152 2153 2154 2155 2156 2157 2158 2159
    @staticmethod
    def fluid_dtype_to_np_dtype(self, dtype):
        return dtype

    @staticmethod
    def np_value_to_fluid_value(input):
        return input

2160 2161 2162 2163 2164
    def _get_gradient(self,
                      input_to_check,
                      place,
                      output_names,
                      no_grad_set,
2165
                      user_defined_grad_outputs=None,
2166
                      parallel=False):
Y
Yu Yang 已提交
2167
        prog = Program()
2168
        scope = core.Scope()
Y
Yu Yang 已提交
2169
        block = prog.global_block()
2170
        self._append_ops(block)
Y
Yu Yang 已提交
2171

2172
        inputs = self._get_inputs(block)
2173
        outputs = self._get_outputs(block)
2174
        feed_dict = self.feed_var(inputs, place)
Y
Yu Yang 已提交
2175

2176
        if user_defined_grad_outputs is None:
2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191
            if self.dtype == np.uint16:
                cast_inputs = list(map(block.var, output_names))
                cast_outputs = block.create_var(
                    dtype="float32", shape=cast_inputs[0].shape)
                cast_op = block.append_op(
                    inputs={"X": cast_inputs},
                    outputs={"Out": cast_outputs},
                    type="cast",
                    attrs={
                        "in_dtype": core.VarDesc.VarType.BF16,
                        "out_dtype": core.VarDesc.VarType.FP32
                    })
                cast_op.desc.infer_var_type(block.desc)
                cast_op.desc.infer_shape(block.desc)
                output_names = [cast_outputs.name]
2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216
            loss = append_loss_ops(block, output_names)
            param_grad_list = append_backward(
                loss=loss,
                parameter_list=input_to_check,
                no_grad_set=no_grad_set)
            fetch_list = [g for p, g in param_grad_list]
        else:
            assert parallel is False, "unsupported parallel mode when giving custom grad outputs."
            # user_defined_grad_outputs here are numpy arrays
            if not isinstance(user_defined_grad_outputs, list):
                user_defined_grad_outputs = [user_defined_grad_outputs]
            grad_outputs = []
            for grad_out_value in user_defined_grad_outputs:
                # `presistable` is used to avoid executor create new var in local scope
                var = block.create_var(
                    shape=grad_out_value.shape,
                    dtype=grad_out_value.dtype,
                    persistable=True)
                true_var = scope.var(var.name)
                tensor = true_var.get_tensor()
                tensor.set(grad_out_value, place)
                grad_outputs.append(var)
            targets = [
                outputs[name] for name in outputs if name in output_names
            ]
2217
            inputs = [inputs[name] for name in input_to_check if name in inputs]
2218 2219 2220 2221
            grad_inputs = paddle.static.gradients(targets, inputs, grad_outputs,
                                                  no_grad_set)
            fetch_list = grad_inputs

2222 2223
        if parallel:
            use_cuda = False
2224
            if isinstance(place, fluid.CUDAPlace):
2225
                use_cuda = True
2226 2227 2228 2229
            compiled_prog = fluid.CompiledProgram(prog).with_data_parallel(
                loss_name=loss.name, places=place)
            prog = compiled_prog
        executor = fluid.Executor(place)
2230 2231
        return list(
            map(np.array,
2232 2233 2234 2235 2236
                executor.run(prog,
                             feed_dict,
                             fetch_list,
                             scope=scope,
                             return_numpy=False)))
A
arlesniak 已提交
2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249


class OpTestTool:
    @classmethod
    def skip_if(cls, condition: object, reason: str):
        return unittest.skipIf(condition, reason)

    @classmethod
    def skip_if_not_cpu_bf16(cls):
        return OpTestTool.skip_if(
            not (isinstance(_current_expected_place(), core.CPUPlace) and
                 core.supports_bfloat16()),
            "Place does not support BF16 evaluation")
2250 2251 2252 2253 2254 2255

    @classmethod
    def skip_if_not_cpu(cls):
        return OpTestTool.skip_if(
            not isinstance(_current_expected_place(), core.CPUPlace),
            "OneDNN supports only CPU for now")