parallel_executor.cc 18.8 KB
Newer Older
Y
Yang Yang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/parallel_executor.h"
D
dzhwinter 已提交
16
#include <algorithm>
C
chengduoZH 已提交
17
#include <string>
18
#include <tuple>
Q
qiaolongfei 已提交
19
#include <vector>
C
chengduo 已提交
20
#include "paddle/fluid/framework/ir/graph_helper.h"
Y
Yu Yang 已提交
21

X
clean  
Xin Pan 已提交
22
#include "paddle/fluid/framework/ir/graph.h"
X
Xin Pan 已提交
23

Y
yuyang18 已提交
24
#include "paddle/fluid/framework/details/fast_threaded_ssa_graph_executor.h"
25
#include "paddle/fluid/framework/details/multi_devices_helper.h"
Y
Yancey1989 已提交
26
#include "paddle/fluid/framework/details/parallel_ssa_graph_executor.h"
S
sneaxiy 已提交
27
#include "paddle/fluid/framework/details/reference_count_pass_helper.h"
Y
yuyang18 已提交
28
#include "paddle/fluid/framework/details/scope_buffered_ssa_graph_executor.h"
Y
Yancey1989 已提交
29
#include "paddle/fluid/framework/details/sequential_execution_pass.h"
Y
Yu Yang 已提交
30
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
31
#include "paddle/fluid/platform/profiler.h"
Y
Yu Yang 已提交
32

Y
Yu Yang 已提交
33
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
34
#include "gperftools/profiler.h"
Y
Yu Yang 已提交
35
#endif
Y
Yu Yang 已提交
36
DEFINE_string(pe_profile_fname, "",
Y
Yu Yang 已提交
37 38
              "Profiler filename for PE, which generated by gperftools."
              "Only valid when compiled `WITH_PRIFILER=ON`. Empty if disable.");
39
DEFINE_bool(enable_parallel_graph, false,
Y
Yancey1989 已提交
40
            "Force disable parallel graph execution mode if set false.");
Y
Yu Yang 已提交
41

Y
Yang Yang 已提交
42
namespace paddle {
Y
Yu Yang 已提交
43 44
namespace framework {

Y
Yu Yang 已提交
45
static std::once_flag gProfileOnce;
Y
Yu Yang 已提交
46
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
47
static bool gProfileStarted = false;
Y
Yu Yang 已提交
48
#endif
Y
Yu Yang 已提交
49 50 51
class ParallelExecutorPrivate {
 public:
  explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
Y
Yu Yang 已提交
52
      : places_(places) {
Y
Yu Yang 已提交
53
    if (!FLAGS_pe_profile_fname.empty()) {
Y
Yu Yang 已提交
54 55
      std::call_once(gProfileOnce, [] {
#ifdef WITH_GPERFTOOLS
Y
Yu Yang 已提交
56
        ProfilerStart(FLAGS_pe_profile_fname.c_str());
Y
Yu Yang 已提交
57 58 59
        gProfileStarted = true;
#else
        LOG(WARNING) << "Paddle is not compiled with gperftools. "
Y
Yu Yang 已提交
60
                        "FLAGS_pe_profile_fname will be ignored";
Y
Yu Yang 已提交
61 62 63 64
#endif
      });
    }
  }
Y
Yu Yang 已提交
65

66 67 68 69 70 71 72 73 74 75 76
  ~ParallelExecutorPrivate() {
    if (own_local_scope_) {
      for (size_t i = 1; i < local_scopes_.size(); ++i) {
        // Skip the first scope, since it is the global scope.
        Scope *local_scope = local_scopes_[i];
        if (global_scope_->HasKid(local_scope)) {
          global_scope_->DeleteScope(local_scope);
        }
      }
    }
  }
S
sneaxiy 已提交
77

S
sneaxiy 已提交
78 79 80 81 82 83 84 85 86 87 88 89 90 91
  std::unique_ptr<ir::Graph> PrepareGCAndRefCnts(
      std::unique_ptr<ir::Graph> graph, size_t max_memory_size);

  inline bool HasGarbageCollectors() const { return !gcs_.empty(); }

  void ResetRuntimeReferenceCount(const std::vector<std::string> &fetch_tensors,
                                  const std::string &fetched_var_name) {
    for (size_t i = 0; i < runtime_ref_cnts_.size(); ++i) {
      for (auto &pair : global_ref_cnts_[i]) {
        runtime_ref_cnts_[i][pair.first] = pair.second;
      }

      for (auto &fetch_name : fetch_tensors) {
        runtime_ref_cnts_[i].erase(fetch_name);
S
sneaxiy 已提交
92
      }
S
sneaxiy 已提交
93
      runtime_ref_cnts_[i].erase(fetched_var_name);
S
sneaxiy 已提交
94 95 96
    }
  }

D
dzhwinter 已提交
97
  BuildStrategy build_strategy_;
Y
Yu Yang 已提交
98 99
  std::vector<platform::Place> places_;
  std::vector<Scope *> local_scopes_;
100
  Scope *global_scope_;  // not owned
Y
Yu Yang 已提交
101
  std::unique_ptr<details::SSAGraphExecutor> executor_;
Y
Yu Yang 已提交
102

P
peizhilin 已提交
103
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yu Yang 已提交
104
  std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
Y
Yu Yang 已提交
105
#endif
C
chengduoZH 已提交
106 107
  bool own_local_scope_;
  bool use_cuda_;
108
  bool use_all_reduce_;
109
  size_t nranks_;
S
sneaxiy 已提交
110

S
sneaxiy 已提交
111 112 113 114 115 116
  // global_ref_cnts_ is only initialized when ParallelExecutor constructs, and
  // then keeps unchanged
  // Before each iteration, runtime_ref_cnts_ is reset to global_ref_cnts_
  std::vector<details::ReferenceCountMap> global_ref_cnts_;
  std::vector<details::AtomicReferenceCountMap> runtime_ref_cnts_;
  details::GarbageCollectorMap gcs_;
Y
Yu Yang 已提交
117 118
};

S
sneaxiy 已提交
119 120 121 122 123 124 125
std::unique_ptr<ir::Graph> ParallelExecutorPrivate::PrepareGCAndRefCnts(
    std::unique_ptr<ir::Graph> graph, size_t max_memory_size) {
  for (size_t i = 0; i < places_.size(); ++i) {
    auto &place = places_[i];
    if (gcs_.count(place) > 0) {
      continue;
    }
S
sneaxiy 已提交
126
    std::unique_ptr<GarbageCollector> gc;
S
sneaxiy 已提交
127
#ifdef PADDLE_WITH_CUDA
S
sneaxiy 已提交
128 129
    if (platform::is_gpu_place(place)) {
      if (IsFastEagerDeletionModeEnabled()) {
S
sneaxiy 已提交
130 131
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
132
      } else {
S
sneaxiy 已提交
133 134
        gc.reset(new StreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place), max_memory_size));
S
sneaxiy 已提交
135 136
      }
      VLOG(10) << "Created " << i << "-th GarbageCollector at " << place;
S
sneaxiy 已提交
137
    } else {
S
sneaxiy 已提交
138
#endif
S
sneaxiy 已提交
139 140 141 142 143 144 145
      if (platform::is_cpu_place(place)) {
        gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place),
                                         max_memory_size));
        VLOG(10) << "Created GarbageCollector at " << place;
      } else {
        PADDLE_THROW("Unsupported place for garbage collection");
      }
S
sneaxiy 已提交
146 147 148 149
#ifdef PADDLE_WITH_CUDA
    }
#endif

S
sneaxiy 已提交
150
    gcs_.emplace(place, std::move(gc));
S
sneaxiy 已提交
151 152
  }

S
sneaxiy 已提交
153
  if (!gcs_.empty()) {
S
sneaxiy 已提交
154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
    std::vector<details::LastLiveOpsOfVars> last_live_ops_of_vars;

    auto ref_cnt_pass =
        ir::PassRegistry::Instance().Get("reference_count_pass");
    ref_cnt_pass->SetNotOwned(details::kGlobalReferenceCount,
                              &global_ref_cnts_);
    ref_cnt_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                              &last_live_ops_of_vars);
    graph = ref_cnt_pass->Apply(std::move(graph));
    VLOG(10) << "ReferenceCountPass Applied";

    auto eager_deletion_pass =
        ir::PassRegistry::Instance().Get("eager_deletion_pass");
    eager_deletion_pass->SetNotOwned(details::kRuntimeReferenceCount,
                                     &runtime_ref_cnts_);
    eager_deletion_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
    eager_deletion_pass->SetNotOwned(details::kLastLiveOpsOfVars,
                                     &last_live_ops_of_vars);
    eager_deletion_pass->SetNotOwned(details::kAllPlaces, &places_);
    graph = eager_deletion_pass->Apply(std::move(graph));
    VLOG(10) << "EagerDeletionPass Applied";
D
dzhwinter 已提交
175 176 177 178 179 180 181 182

    if (build_strategy_.memory_early_delete_) {
      auto early_delete_pass =
          ir::PassRegistry::Instance().Get("memory_early_delete_pass");
      early_delete_pass->SetNotOwned(details::kGarbageCollector, &gcs_);
      graph = early_delete_pass->Apply(std::move(graph));
    }
    VLOG(10) << "MemoryEarlyDeletePass Applied.";
S
sneaxiy 已提交
183 184 185 186 187
  }

  return graph;
}

188 189 190 191
std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
  return member_->local_scopes_;
}

Y
Yu Yang 已提交
192
ParallelExecutor::ParallelExecutor(
193
    const std::vector<platform::Place> &places,
194 195
    const std::unordered_set<std::string> &bcast_vars,
    const ProgramDesc &main_program, const std::string &loss_var_name,
Y
yuyang18 已提交
196
    Scope *scope, const std::vector<Scope *> &local_scopes,
197
    const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy)
Y
Yu Yang 已提交
198
    : member_(new ParallelExecutorPrivate(places)) {
Y
Yu Yang 已提交
199
  member_->global_scope_ = scope;
200
  member_->use_cuda_ = exec_strategy.use_cuda_;
D
dzhwinter 已提交
201
  member_->build_strategy_ = build_strategy;
202 203
  member_->use_all_reduce_ =
      build_strategy.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce;
X
Xin Pan 已提交
204
  member_->nranks_ = build_strategy.num_trainers_ * places.size();
205 206 207 208
  if (!member_->use_all_reduce_) {
    PADDLE_ENFORCE(places.size() > 1,
                   "If you set build_strategy.reduce with 'Reduce',"
                   "the number of places must be greater than 1.");
Y
Yancey1989 已提交
209 210
  }

211
  // Step 1. Bcast the bcast_vars to devs.
Y
Yu Yang 已提交
212
  // Create local scopes
213
  if (local_scopes.empty()) {
C
chengduoZH 已提交
214
    member_->own_local_scope_ = true;
Y
Yu Yang 已提交
215 216
    member_->local_scopes_.emplace_back(member_->global_scope_);
    for (size_t i = 1; i < member_->places_.size(); ++i) {
Y
Debug  
Yu Yang 已提交
217
      member_->local_scopes_.emplace_back(&scope->NewScope());
218 219
    }
  } else {
C
chengduoZH 已提交
220
    member_->own_local_scope_ = false;
221 222
    PADDLE_ENFORCE_EQ(member_->places_.size(), local_scopes.size());
    for (size_t i = 0; i < member_->places_.size(); ++i) {
223
      member_->local_scopes_.emplace_back(&local_scopes[i]->NewScope());
224
    }
Y
Yu Yang 已提交
225 226
  }

Y
Yancey1989 已提交
227 228 229 230 231
  // FIXME(Yancey1989): parallel graph mode get better performance
  // in GPU allreduce distributed training. Need an elegant way to
  // choice the execution strategy.
  build_strategy.enable_parallel_graph_ =
      EnableParallelGraphExecution(main_program, exec_strategy, build_strategy);
Y
Yancey1989 已提交
232 233 234 235
  if (build_strategy.enable_parallel_graph_)
    VLOG(0) << "The Executor would execute the graph by ParallelGraph "
               "Execution which can get better performance,"
            << "you can force it off by env FLAGS_enable_parallel_graph=0";
Y
Yancey1989 已提交
236

C
chengduoZH 已提交
237
  if (member_->use_cuda_) {
Y
Yu Yang 已提交
238
// Bcast Parameters to all GPUs
P
peizhilin 已提交
239
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
240 241 242
    ncclUniqueId *nccl_id = nullptr;
    // gen_nccl_id operator can broadcast the ncclUniqueId for nccl2 collective
    // distributed training
C
chengduoZH 已提交
243
    auto *nccl_id_var = scope->FindVar(NCCL_ID_VARNAME);
Y
Yancey1989 已提交
244
    if (nccl_id_var != nullptr) {
Y
Yancey1989 已提交
245
      nccl_id = nccl_id_var->GetMutable<ncclUniqueId>();
Y
Yancey1989 已提交
246
    }
247
    if (build_strategy.enable_parallel_graph_ && member_->nranks_ > 1UL) {
Y
Yancey1989 已提交
248 249 250 251
      if (nccl_id == nullptr) {
        local_nccl_id_.reset(new ncclUniqueId());
        platform::dynload::ncclGetUniqueId(local_nccl_id_.get());
        nccl_id = local_nccl_id_.get();
Y
Yancey1989 已提交
252
      }
C
chengduoZH 已提交
253
    }
Y
Yancey1989 已提交
254

C
chengduoZH 已提交
255
    member_->nccl_ctxs_.reset(new platform::NCCLContextMap(
256 257
        member_->places_, nccl_id, build_strategy.num_trainers_,
        build_strategy.trainer_id_));
C
chengduoZH 已提交
258 259
#else
    PADDLE_THROW("Not compiled with CUDA");
Y
Yu Yang 已提交
260
#endif
C
chengduoZH 已提交
261 262
  }
  if (member_->local_scopes_.size() != 1 && local_scopes.empty()) {
Y
Yancey1989 已提交
263
    BCastParamsToDevices(bcast_vars);
Y
Yu Yang 已提交
264
  }
Y
Yancey1989 已提交
265
  // Startup Program has been run. All local scopes has correct parameters.
Y
yuyang18 已提交
266

Y
Yancey1989 已提交
267 268
  // Step 2. Convert main_program to SSA form and dependency graph. Also, insert
  // ncclOp
Y
Yancey1989 已提交
269
  std::unique_ptr<ir::Graph> graph;
P
peizhilin 已提交
270
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
Y
Yancey1989 已提交
271 272 273
  graph = build_strategy.Apply(main_program, member_->places_, loss_var_name,
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_, member_->nccl_ctxs_.get());
C
chengduoZH 已提交
274
#else
Y
Yancey1989 已提交
275 276 277
  graph = build_strategy.Apply(main_program, member_->places_, loss_var_name,
                               member_->local_scopes_, member_->nranks_,
                               member_->use_cuda_);
Y
Yu Yang 已提交
278
#endif
Y
Yancey1989 已提交
279
  auto max_memory_size = GetEagerDeletionThreshold();
Y
Yancey1989 已提交
280
  if (max_memory_size >= 0) {
Y
Yancey1989 已提交
281 282
    graph = member_->PrepareGCAndRefCnts(std::move(graph),
                                         static_cast<size_t>(max_memory_size));
Y
Yancey1989 已提交
283 284
  }

285 286
  // Step 3. Create vars in each scope. Passes may also create new vars.
  //         skip control vars and empty vars
Y
Yancey1989 已提交
287
  std::vector<details::VariableInfo> var_infos;
Y
Yancey1989 已提交
288 289 290 291 292 293
  for (auto &node : graph->Nodes()) {
    if (node->IsVar() && !node->IsCtrlVar() && node->Var()) {
      var_infos.emplace_back();
      var_infos.back().name_ = node->Var()->Name();
      var_infos.back().type_ = node->Var()->GetType();
      var_infos.back().persistable_ = node->Var()->Persistable();
Y
Yancey1989 已提交
294 295
    }
  }
Y
Yancey1989 已提交
296

W
Wu Yi 已提交
297 298
  // If the loss_var_name is given, the number of graph should be only one.
  if (loss_var_name.size()) {
Y
Yancey1989 已提交
299
    size_t graph_num = ir::GraphNum(*graph);
C
chengduo 已提交
300 301 302 303
    if (graph_num > 1) {
      LOG(WARNING)
          << "The number of graph should be only one, "
             "but the current graph has "
Y
Yancey1989 已提交
304
          << ir::GraphNum(*graph)
C
chengduo 已提交
305 306 307 308 309
          << " sub_graphs. If you want to see the nodes of the "
             "sub_graphs, you should use 'FLAGS_print_sub_graph_dir' "
             "to specify the output dir. NOTES: if you not do training, "
             "please don't pass loss_var_name.";
    }
W
Wu Yi 已提交
310 311
  }

Y
Yancey1989 已提交
312
  if (build_strategy.enable_parallel_graph_) {
Y
Yancey1989 已提交
313 314 315 316 317 318 319 320 321 322 323 324
    auto parallel_graph =
        details::SeparateMultiDevicesGraph(member_->places_, std::move(graph));
    auto seq_allreduce_pass =
        ir::PassRegistry::Instance().Get("all_reduce_deps_pass");
    seq_allreduce_pass->Erase(details::kAllOpDescs);
    seq_allreduce_pass->Set<const std::vector<OpDesc *>>(
        details::kAllOpDescs,
        new std::vector<OpDesc *>(main_program.Block(0).AllOps()));
    for (size_t i = 0; i < parallel_graph.size(); ++i) {
      parallel_graph[i] =
          seq_allreduce_pass->Apply(std::move(parallel_graph[i]));
    }
Y
Yancey1989 已提交
325
    member_->executor_.reset(new details::ParallelSSAGraphExecutor(
Y
Yancey1989 已提交
326
        exec_strategy, member_->local_scopes_, member_->places_,
Y
Yancey1989 已提交
327
        std::move(parallel_graph)));
Y
yuyang18 已提交
328
  } else {
Y
Yancey1989 已提交
329 330 331
    if (exec_strategy.type_ == ExecutionStrategy::kDefault) {
      member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
Y
Yancey1989 已提交
332
          std::move(graph)));
Y
Yancey1989 已提交
333 334 335
    } else {
      member_->executor_.reset(new details::FastThreadedSSAGraphExecutor(
          exec_strategy, member_->local_scopes_, member_->places_,
Y
Yancey1989 已提交
336
          std::move(graph)));
Y
Yancey1989 已提交
337
    }
C
chengduoZH 已提交
338
  }
Y
yuyang18 已提交
339 340

  member_->executor_.reset(new details::ScopeBufferedSSAGraphExecutor(
Y
Yancey1989 已提交
341
      exec_strategy, member_->local_scopes_, std::move(var_infos),
Y
yuyang18 已提交
342
      member_->places_, std::move(member_->executor_)));
Y
Yu Yang 已提交
343 344
}

Y
Yancey1989 已提交
345
void ParallelExecutor::BCastParamsToDevices(
346
    const std::unordered_set<std::string> &vars) const {
X
Xin Pan 已提交
347
  // the initializing bcast, all vars would be bcast from device(0).
348
  for (auto &var : vars) {
X
Xin Pan 已提交
349
    framework::Variable *main_var = member_->local_scopes_[0]->FindVar(var);
J
JiayiFeng 已提交
350
    if (main_var == nullptr || !main_var->IsType<LoDTensor>()) {
351 352 353 354
      continue;
    }

    auto &main_tensor = main_var->Get<LoDTensor>();
355
    if (!main_tensor.IsInitialized()) {
M
minqiyang 已提交
356
      VLOG(3) << "one in var not inited, return!";
357 358
      continue;
    }
359 360
    auto &dims = main_tensor.dims();
    if (paddle::platform::is_gpu_place(main_tensor.place())) {
P
peizhilin 已提交
361
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
362
      std::vector<void *> buffers;
C
chengduo 已提交
363
      buffers.reserve(member_->places_.size());
364 365 366 367 368
      size_t numel = main_tensor.numel();
      ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
      for (size_t i = 0; i < member_->places_.size(); ++i) {
        auto place = member_->places_[i];
        void *buffer;
369

X
Xin Pan 已提交
370
        if (i == 0) {
371 372
          buffer = const_cast<void *>(main_tensor.data<void>());
        } else {
Y
Yu Yang 已提交
373
          auto local_scope = member_->local_scopes_[i];
374
          auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
Y
Update  
Yu Yang 已提交
375
          t->Resize(dims);
376
          buffer = t->mutable_data(place, main_tensor.type());
Y
Update  
Yu Yang 已提交
377
        }
378
        buffers.push_back(buffer);
379
      }
380

381 382 383 384 385 386
      PADDLE_ENFORCE_EQ(member_->places_.size(), buffers.size(),
                        "variables' buffer size to bcast NOT equal to places");
      {
        platform::NCCLGroupGuard guard;
        for (size_t i = 0; i < member_->places_.size(); ++i) {
          auto &nccl_ctx = member_->nccl_ctxs_->at(member_->places_[i]);
X
Xin Pan 已提交
387 388
          platform::dynload::ncclBcast(buffers[i], numel, data_type, 0,
                                       nccl_ctx.comm_, nccl_ctx.stream());
389
        }
390
        member_->nccl_ctxs_->WaitAll();
391
      }
C
chengduoZH 已提交
392 393 394
#else
      PADDLE_THROW("Not compiled with CUDA");
#endif
395 396
    } else {
      platform::CPUPlace cpu;
C
chengduo 已提交
397
      for (size_t i = 1; i < member_->places_.size(); ++i) {
398 399
        auto local_scope = member_->local_scopes_[i];
        auto *t = local_scope->Var(var)->GetMutable<LoDTensor>();
C
chengduo 已提交
400 401 402 403

        // FIXME(zcd): LR_DECAY_COUNTER should not be shared. This is a hot fix.
        if (member_->use_all_reduce_ || member_->use_cuda_ ||
            var == "@LR_DECAY_COUNTER@") {
404 405 406 407 408 409
          t->Resize(dims);
          t->mutable_data(cpu, main_tensor.type());
          paddle::framework::TensorCopy(main_tensor, cpu, t);
        } else {
          t->ShareDataWith(main_tensor);
        }
Y
Yu Yang 已提交
410
      }
Y
Stash  
Yu Yang 已提交
411 412
    }
  }
Y
Yu Yang 已提交
413
}
Y
Yu Yang 已提交
414

Y
Yu Yang 已提交
415 416
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
                           const std::string &fetched_var_name) {
Y
Yu Yang 已提交
417 418 419
#ifdef WITH_GPERFTOOLS
  if (gProfileStarted) {
    ProfilerFlush();
S
sneaxiy 已提交
420 421
  }
#endif
Y
Yu Yang 已提交
422

X
Xin Pan 已提交
423
  platform::RecordBlock b(0);
S
sneaxiy 已提交
424 425
  if (member_->HasGarbageCollectors()) {
    member_->ResetRuntimeReferenceCount(fetch_tensors, fetched_var_name);
S
sneaxiy 已提交
426
  }
S
sneaxiy 已提交
427 428 429
  auto fetch_data = member_->executor_->Run(fetch_tensors);
  *member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
      fetch_data;
Y
Yu Yang 已提交
430
}
Y
Yu Yang 已提交
431

Y
Yu Yang 已提交
432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450
void ParallelExecutor::FeedTensorsIntoLocalScopes(
    const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors) {
  PADDLE_ENFORCE_EQ(member_->local_scopes_.size(), tensors.size());

  for (size_t i = 0; i < tensors.size(); ++i) {
    auto &map = tensors[i];
    auto *scope = member_->local_scopes_[i];
    for (auto &pair : map) {
      auto *trg = scope->Var(pair.first)->GetMutable<LoDTensor>();
      trg->ShareDataWith(pair.second);
      trg->set_lod(pair.second.lod());
    }
  }
}

void ParallelExecutor::FeedAndSplitTensorIntoLocalScopes(
    const std::unordered_map<std::string, LoDTensor> &tensors) {
  for (auto pair : tensors) {
    auto lod_tensors = pair.second.SplitLoDTensor(member_->places_);
451 452 453 454 455
    PADDLE_ENFORCE_EQ(
        member_->places_.size(), lod_tensors.size(),
        "The number of samples of current batch is less than the count of "
        "devices, currently, it is not allowed. (%d vs %d)",
        member_->places_.size(), lod_tensors.size());
X
Xin Pan 已提交
456 457
    for (size_t j = 0; j < member_->places_.size(); ++j) {
      // TODO(panxy0718): Do I need to delete this var?
458
      auto t =
Y
Yu Yang 已提交
459
          member_->local_scopes_[j]->Var(pair.first)->GetMutable<LoDTensor>();
460 461
      t->ShareDataWith(lod_tensors[j]);
      t->set_lod(lod_tensors[j].lod());
X
Xin Pan 已提交
462 463 464 465
    }
  }
}

466 467 468
bool ParallelExecutor::EnableParallelGraphExecution(
    const ProgramDesc &main_program, const ExecutionStrategy &exec_strategy,
    const BuildStrategy &build_strategy) const {
Y
Yancey1989 已提交
469
  if (!FLAGS_enable_parallel_graph) return false;
470

Y
Yancey1989 已提交
471
  bool enable_parallel_graph = true;
472 473 474 475 476 477 478 479 480 481 482 483 484 485 486
  // TODO(Yancey1989): support sparse update in ParallelGraph mode.
  for (auto &var_desc : main_program.Block(0).AllVars()) {
    if (var_desc->GetType() == proto::VarType::SELECTED_ROWS) {
      enable_parallel_graph = false;
    }
  }

  // TODO(Yancey1989): support pserver mode
  for (auto &op_desc : main_program.Block(0).AllOps()) {
    if (op_desc->Type() == "send" || op_desc->Type() == "recv") {
      enable_parallel_graph = false;
      break;
    }
  }

Y
Yancey1989 已提交
487 488
  // if (!member_->use_all_reduce_ || !member_->use_cuda_)
  if (!member_->use_all_reduce_) enable_parallel_graph = false;
489 490 491 492

  if (build_strategy.enable_sequential_execution_ ||
      exec_strategy.type_ == ExecutionStrategy::ExecutorType::kExperimental)
    enable_parallel_graph = false;
Y
Yancey1989 已提交
493
  return enable_parallel_graph;
494 495
}

496
ParallelExecutor::~ParallelExecutor() {
497 498
  for (auto &p : member_->places_) {
    platform::DeviceContextPool::Instance().Get(p)->Wait();
C
chengduozh 已提交
499
  }
S
sneaxiy 已提交
500
  delete member_;
501 502
}

Y
Yu Yang 已提交
503
}  // namespace framework
Y
Yang Yang 已提交
504
}  // namespace paddle
S
sneaxiy 已提交
505

D
dzhwinter 已提交
506
USE_PASS(memory_early_delete_pass);
S
sneaxiy 已提交
507
USE_PASS(reference_count_pass);
S
sneaxiy 已提交
508
USE_PASS(eager_deletion_pass);