lookup_table_op.cc 7.9 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lookup_table_op.h"
H
Huihuang Zheng 已提交
16 17 18 19

#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/var_type_inference.h"
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext* ctx) const override {
30 31 32 33 34 35
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                      "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"), true,
                      "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of LookupTableOp should not be null.");
Q
Qiao Longfei 已提交
36 37 38

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
39
    int ids_rank = ids_dims.size();
40
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
41 42 43 44 45 46 47 48 49 50 51
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
        "ShapeError: The dimensions of the 'lookup table' must be 2. "
        "But received lookup table's dimensions = %d, "
        "lookup table's shape = [%s].",
        table_dims.size(), table_dims);
    PADDLE_ENFORCE_EQ(
        ids_dims[ids_rank - 1], 1,
        "ShapeError: The last dimensions of the 'Ids' tensor must be 1. "
        "But received Ids's last dimensions = %d, Ids's shape = [%s].",
        ids_dims[ids_rank - 1], ids_dims);
52

53 54 55 56
    auto output_dims =
        framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
57 58 59 60 61

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
62
  }
Y
Yu Yang 已提交
63

64
 protected:
65
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
66
      const framework::ExecutionContext& ctx) const override {
67
    auto data_type = OperatorWithKernel::IndicateVarDataType(ctx, "W");
Q
qiaolongfei 已提交
68
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
69
  }
70 71 72 73
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
74
  void Make() override {
75
    AddInput("W",
C
chengduoZH 已提交
76
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
77
             "which is a learnable parameter.");
78
    AddInput("Ids",
79
             "An input with type int64 "
80
             "contains the ids to be looked up in W. "
81
             "The last dimension size must be 1.");
82
    AddOutput("Out", "The lookup results, which have the same type as W.");
C
chengduoZH 已提交
83
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
84
                  "(boolean, default false) "
C
chengduoZH 已提交
85
                  "Sparse update.")
C
chengduoZH 已提交
86
        .SetDefault(false);
87 88 89
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
C
chengduoZH 已提交
90 91 92 93 94
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
95
        .SetDefault(kNoPadding);
M
minqiyang 已提交
96 97
    // NOTE(minqiyang): grad_inplace is an temporal attribute,
    // please do NOT set this attribute in python layer.
M
minqiyang 已提交
98 99 100 101
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
102 103

    // for parameter prefetch
Q
Qiao Longfei 已提交
104
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
Q
Qiao Longfei 已提交
105
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
106 107 108
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
Q
Qiao Longfei 已提交
109 110 111 112
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
Q
Qiao Longfei 已提交
113
        .SetDefault({});
Q
Qiao Longfei 已提交
114 115 116 117 118 119
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the splited table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Q
Qiao Longfei 已提交
120

C
chengduoZH 已提交
121
    AddComment(R"DOC(
C
chengduoZH 已提交
122
Lookup Table Operator.
C
chengduoZH 已提交
123

C
chengduoZH 已提交
124
This operator is used to perform lookups on the parameter W,
125
then concatenated into a dense tensor.
126

127 128
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
C
chengduoZH 已提交
129 130 131 132 133

)DOC");
  }
};

H
Huihuang Zheng 已提交
134 135
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(LookupTableGradOpNoBuffer, "W");

H
hong 已提交
136 137
template <typename T>
class LookupTableGradOpMaker : public framework::SingleGradOpMaker<T> {
H
Huihuang Zheng 已提交
138
 public:
H
hong 已提交
139
  using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
H
Huihuang Zheng 已提交
140 141

 protected:
H
hong 已提交
142 143
  std::unique_ptr<T> Apply() const override {
    std::unique_ptr<T> op(new T());
H
Huihuang Zheng 已提交
144 145 146

    op->SetType("lookup_table_grad");

H
hong 已提交
147 148 149
    op->SetInput("W", this->Input("W"));
    op->SetInput("Ids", this->Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
H
Huihuang Zheng 已提交
150

H
hong 已提交
151
    op->SetOutput(framework::GradVarName("W"), this->InputGrad("W"));
H
Huihuang Zheng 已提交
152

H
hong 已提交
153
    op->SetAttrMap(this->Attrs());
H
Huihuang Zheng 已提交
154 155 156 157
    return op;
  }
};

158 159 160 161
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

162
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
163 164
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
165
  }
Y
Yu Yang 已提交
166

167
 protected:
168
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
169
      const framework::ExecutionContext& ctx) const override {
170 171
    auto data_type = OperatorWithKernel::IndicateVarDataType(
        ctx, framework::GradVarName("Out"));
Q
qiaolongfei 已提交
172
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
173
  }
174 175
};

176 177
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
178 179 180
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto out_var_name = ctx->Output(framework::GradVarName("W")).front();
    auto attr = ctx->GetAttr("is_sparse");
181 182
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
M
minqiyang 已提交
183 184
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
M
minqiyang 已提交
185
      ctx->SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS);
186
    } else {
M
minqiyang 已提交
187 188
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
M
minqiyang 已提交
189
      ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
190
    }
M
minqiyang 已提交
191
    ctx->SetDataType(out_var_name, ctx->GetDataType(ctx->Input("W")[0]));
192 193 194
  }
};

195 196 197 198
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
Huihuang Zheng 已提交
199
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker,
H
hong 已提交
200 201
                  ops::LookupTableGradOpMaker<paddle::framework::OpDesc>,
                  ops::LookupTableGradOpMaker<paddle::imperative::OpBase>);
H
Huihuang Zheng 已提交
202

203
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
H
Huihuang Zheng 已提交
204
                  ops::LookupTableGradOpNoBuffer,
205 206 207
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
208 209
                       ops::LookupTableKernel<double>,
                       ops::LookupTableKernel<int8_t>);
210 211
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);