lookup_table_op.cc 7.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lookup_table_op.h"
H
Huihuang Zheng 已提交
16 17 18 19

#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/var_type_inference.h"
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
30 31 32 33 34 35 36 37 38
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupTableOp should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
39
    int ids_rank = ids_dims.size();
40
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
41 42 43
    PADDLE_ENFORCE_EQ(table_dims.size(), 2);
    PADDLE_ENFORCE_EQ(ids_dims[ids_rank - 1], 1,
                      "The last dimension of the 'Ids' tensor must be 1.");
44

45 46 47 48
    auto output_dims =
        framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
49 50 51 52 53

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
54
  }
Y
Yu Yang 已提交
55

56
 protected:
57
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
58
      const framework::ExecutionContext& ctx) const override {
Q
qiaolongfei 已提交
59 60
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
61
  }
62 63 64 65
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
66
  void Make() override {
67
    AddInput("W",
C
chengduoZH 已提交
68
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
69
             "which is a learnable parameter.");
70 71 72
    AddInput("Ids",
             "An input with type int32 or int64 "
             "contains the ids to be looked up in W. "
73
             "The last dimension size must be 1.");
74
    AddOutput("Out", "The lookup results, which have the same type as W.");
C
chengduoZH 已提交
75
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
76
                  "(boolean, default false) "
C
chengduoZH 已提交
77
                  "Sparse update.")
C
chengduoZH 已提交
78
        .SetDefault(false);
79 80 81
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
C
chengduoZH 已提交
82 83 84 85 86
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
87
        .SetDefault(kNoPadding);
M
minqiyang 已提交
88 89
    // NOTE(minqiyang): grad_inplace is an temporal attribute,
    // please do NOT set this attribute in python layer.
M
minqiyang 已提交
90 91 92 93
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
94 95

    // for parameter prefetch
Q
Qiao Longfei 已提交
96
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
Q
Qiao Longfei 已提交
97
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
98 99 100
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
Q
Qiao Longfei 已提交
101 102 103 104
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
Q
Qiao Longfei 已提交
105
        .SetDefault({});
Q
Qiao Longfei 已提交
106 107 108 109 110 111
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the splited table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Q
Qiao Longfei 已提交
112

C
chengduoZH 已提交
113
    AddComment(R"DOC(
C
chengduoZH 已提交
114
Lookup Table Operator.
C
chengduoZH 已提交
115

C
chengduoZH 已提交
116
This operator is used to perform lookups on the parameter W,
117
then concatenated into a dense tensor.
118

119 120
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
C
chengduoZH 已提交
121 122 123 124 125

)DOC");
  }
};

H
Huihuang Zheng 已提交
126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(LookupTableGradOpNoBuffer, "W");

class LookupTableGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());

    op->SetType("lookup_table_grad");

    op->SetInput("W", Input("W"));
    op->SetInput("Ids", Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetOutput(framework::GradVarName("W"), InputGrad("W"));

    op->SetAttrMap(Attrs());
    return op;
  }
};

149 150 151 152
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

153
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
154 155
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
156
  }
Y
Yu Yang 已提交
157

158
 protected:
159
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
160
      const framework::ExecutionContext& ctx) const override {
H
Huihuang Zheng 已提交
161 162
    auto data_type = framework::GetDataTypeOfVar(
        ctx.InputVar(framework::GradVarName("Out")));
Q
qiaolongfei 已提交
163
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
164
  }
165 166
};

167 168
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
169 170 171
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto out_var_name = ctx->Output(framework::GradVarName("W")).front();
    auto attr = ctx->GetAttr("is_sparse");
172 173
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
M
minqiyang 已提交
174 175
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
M
minqiyang 已提交
176
      ctx->SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS);
177
    } else {
M
minqiyang 已提交
178 179
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
M
minqiyang 已提交
180
      ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
181
    }
M
minqiyang 已提交
182
    ctx->SetDataType(out_var_name, ctx->GetDataType(ctx->Input("W")[0]));
183 184 185
  }
};

186 187 188 189
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
Huihuang Zheng 已提交
190 191 192
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker,
                  ops::LookupTableGradOpDescMaker);

193
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
H
Huihuang Zheng 已提交
194
                  ops::LookupTableGradOpNoBuffer,
195 196 197 198 199 200
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);