lookup_table_op.cc 5.6 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15 16
#include "paddle/fluid/operators/lookup_table_op.h"
#include "paddle/fluid/framework/var_type_inference.h"
17 18 19 20 21 22 23 24

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

25
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
26 27 28 29 30 31 32 33 34 35
    PADDLE_ENFORCE(ctx->HasInput("W"),
                   "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasInput("Ids"),
                   "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE(ctx->HasOutput("Out"),
                   "Output(Out) of LookupTableOp should not be null.");

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");

C
chengduoZH 已提交
36 37 38 39 40 41 42
    auto ids_var_type = ctx->GetInputsVarType("Ids").front();
    // ids_var_types also can be LOD_TENSOR_ARRAY, it's used as concat_rows.
    // Maybe near future we will add concat_rows op.
    if (ids_var_type == framework::proto::VarType::LOD_TENSOR) {
      PADDLE_ENFORCE_EQ(ids_dims.size(), 2);
      PADDLE_ENFORCE_EQ(ids_dims[1], 1);
    }
43

Q
Qiao Longfei 已提交
44 45
    ctx->SetOutputDim("Out", {ids_dims[0], table_dims[1]});
    ctx->ShareLoD("Ids", /*->*/ "Out");
46
  }
Y
Yu Yang 已提交
47

48
 protected:
49
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
50
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
51 52 53
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
54
  }
55 56 57 58
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
59
  LookupTableOpMaker(OpProto* proto, OpAttrChecker* op_checker)
60 61
      : OpProtoAndCheckerMaker(proto, op_checker) {
    AddInput("W",
K
kexinzhao 已提交
62 63
             "An input represents embedding tensors, "
             "which is a learnable parameter.");
64
    AddInput("Ids",
K
kexinzhao 已提交
65 66 67 68 69 70 71 72 73
             "An input with type int32 or int64 "
             "contains the ids to be looked up in W. "
             "Ids must be a column vector with rank = 2. "
             "The 2nd dimension size must be 1.");
    AddOutput("Out", "The lookup results, which have the same type as W.");
    AddAttr<bool>("is_sparse",
                  "(boolean, default false) "
                  "Sparse update")
        .SetDefault(false);
74 75 76 77 78
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
79
        .SetDefault(-1);
80
    AddComment(R"DOC(
K
kexinzhao 已提交
81 82
Lookup Table Operator.

83 84 85
This operator is used to perform lookups on the parameter W,
then concatenated into a dense tensor.

K
kexinzhao 已提交
86 87 88
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.

89
)DOC");
90 91 92
  }
};

93 94 95 96 97 98 99 100 101
class LookupTableOpGradDescMaker
    : public framework::DefaultGradOpDescMaker<true> {
  using ::paddle::framework::DefaultGradOpDescMaker<
      true>::DefaultGradOpDescMaker;

 protected:
  virtual std::string GradOpType() const { return "lookup_table_grad"; }
};

102 103 104 105
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

106
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
107 108
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
109
  }
Y
Yu Yang 已提交
110

111
 protected:
112
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
113
      const framework::ExecutionContext& ctx) const override {
Y
Yu Yang 已提交
114 115 116
    return framework::OpKernelType(
        framework::ToDataType(ctx.Input<LoDTensor>("W")->type()),
        ctx.device_context());
Y
Yu Yang 已提交
117
  }
118 119
};

120 121
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
Y
Yu Yang 已提交
122 123
  void operator()(const framework::OpDesc& op_desc,
                  framework::BlockDesc* block) const override {
124 125 126 127 128 129
    auto out_var_name = op_desc.Output(framework::GradVarName("W")).front();
    auto attr = op_desc.GetAttr("is_sparse");
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
130
      block->Var(out_var_name)
131
          ->SetType(framework::proto::VarType::SELECTED_ROWS);
132 133 134
    } else {
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
135
      block->Var(out_var_name)->SetType(framework::proto::VarType::LOD_TENSOR);
136 137 138 139
    }
  }
};

140 141 142 143
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
144 145 146 147 148 149 150 151 152
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp,
                  ops::LookupTableOpGradDescMaker, ops::LookupTableOpMaker);
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);