lookup_table_op.cc 7.8 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
2

L
Luo Tao 已提交
3 4 5
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
6

L
Luo Tao 已提交
7
    http://www.apache.org/licenses/LICENSE-2.0
8

L
Luo Tao 已提交
9 10 11 12 13
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
14

Y
Yi Wang 已提交
15
#include "paddle/fluid/operators/lookup_table_op.h"
H
Huihuang Zheng 已提交
16 17 18 19

#include <memory>

#include "paddle/fluid/framework/no_need_buffer_vars_inference.h"
Y
Yi Wang 已提交
20
#include "paddle/fluid/framework/var_type_inference.h"
21 22 23 24 25 26 27 28

namespace paddle {
namespace operators {

class LookupTableOp : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

29
  void InferShape(framework::InferShapeContext* ctx) const override {
30 31 32 33 34 35
    PADDLE_ENFORCE_EQ(ctx->HasInput("W"), true,
                      "Input(W) of LookupTableOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasInput("Ids"), true,
                      "Input(Ids) of LookupTableOp should not be null.");
    PADDLE_ENFORCE_EQ(ctx->HasOutput("Out"), true,
                      "Output(Out) of LookupTableOp should not be null.");
Q
Qiao Longfei 已提交
36 37 38

    auto table_dims = ctx->GetInputDim("W");
    auto ids_dims = ctx->GetInputDim("Ids");
39
    int ids_rank = ids_dims.size();
40
    VLOG(5) << "ids rank is " << ids_rank << std::endl;
41 42 43 44 45 46 47 48 49 50 51
    PADDLE_ENFORCE_EQ(
        table_dims.size(), 2,
        "ShapeError: The dimensions of the 'lookup table' must be 2. "
        "But received lookup table's dimensions = %d, "
        "lookup table's shape = [%s].",
        table_dims.size(), table_dims);
    PADDLE_ENFORCE_EQ(
        ids_dims[ids_rank - 1], 1,
        "ShapeError: The last dimensions of the 'Ids' tensor must be 1. "
        "But received Ids's last dimensions = %d, Ids's shape = [%s].",
        ids_dims[ids_rank - 1], ids_dims);
52

53 54 55 56
    auto output_dims =
        framework::vectorize(framework::slice_ddim(ids_dims, 0, ids_rank - 1));
    output_dims.push_back(table_dims[1]);
    ctx->SetOutputDim("Out", framework::make_ddim(output_dims));
57 58 59 60 61

    if (ctx->GetOutputsVarType("Out")[0] ==
        framework::proto::VarType::LOD_TENSOR) {
      ctx->ShareLoD("Ids", /*->*/ "Out");
    }
62
  }
Y
Yu Yang 已提交
63

64
 protected:
65
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
66
      const framework::ExecutionContext& ctx) const override {
Q
qiaolongfei 已提交
67 68
    auto data_type = framework::GetDataTypeOfVar(ctx.InputVar("W"));
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
69
  }
70 71 72 73
};

class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker {
 public:
Y
Yu Yang 已提交
74
  void Make() override {
75
    AddInput("W",
C
chengduoZH 已提交
76
             "(Tensor) The input represents embedding tensors, "
K
kexinzhao 已提交
77
             "which is a learnable parameter.");
78
    AddInput("Ids",
79
             "An input with type int64 "
80
             "contains the ids to be looked up in W. "
81
             "The last dimension size must be 1.");
82
    AddOutput("Out", "The lookup results, which have the same type as W.");
C
chengduoZH 已提交
83
    AddAttr<bool>("is_sparse",
C
chengduoZH 已提交
84
                  "(boolean, default false) "
C
chengduoZH 已提交
85
                  "Sparse update.")
C
chengduoZH 已提交
86
        .SetDefault(false);
87 88 89
    AddAttr<bool>("is_distributed",
                  "(boolean, default false) distributed lookup table.")
        .SetDefault(false);
C
chengduoZH 已提交
90 91 92 93 94
    AddAttr<int64_t>("padding_idx",
                     "(int64, default -1) "
                     "If the value is -1, it makes no effect to lookup. "
                     "Otherwise the given value indicates padding the output "
                     "with zeros whenever lookup encounters it in Ids.")
95
        .SetDefault(kNoPadding);
M
minqiyang 已提交
96 97
    // NOTE(minqiyang): grad_inplace is an temporal attribute,
    // please do NOT set this attribute in python layer.
M
minqiyang 已提交
98 99 100 101
    AddAttr<bool>("grad_inplace",
                  "(boolean, default false) "
                  "If the grad op reuse the input's variable.")
        .SetDefault(false);
Q
Qiao Longfei 已提交
102 103

    // for parameter prefetch
Q
Qiao Longfei 已提交
104
    AddAttr<bool>("remote_prefetch", "").SetDefault(false);
Q
Qiao Longfei 已提交
105
    AddAttr<int>("trainer_id", "trainer id from 0 ~ worker_num.").SetDefault(0);
Q
Qiao Longfei 已提交
106 107 108
    AddAttr<std::vector<int64_t>>("height_sections",
                                  "Height for each output SelectedRows.")
        .SetDefault(std::vector<int64_t>({}));
Q
Qiao Longfei 已提交
109 110 111 112
    AddAttr<std::vector<std::string>>(
        "epmap",
        "(string vector, default 127.0.0.1:6164)"
        "Server endpoints in the order of input variables for mapping")
Q
Qiao Longfei 已提交
113
        .SetDefault({});
Q
Qiao Longfei 已提交
114 115 116 117 118 119
    AddAttr<std::vector<std::string>>(
        "table_names",
        "(string vector, the splited table names that will be fetched from "
        "parameter server)"
        "in the order of input variables for mapping")
        .SetDefault({});
Q
Qiao Longfei 已提交
120

C
chengduoZH 已提交
121
    AddComment(R"DOC(
C
chengduoZH 已提交
122
Lookup Table Operator.
C
chengduoZH 已提交
123

C
chengduoZH 已提交
124
This operator is used to perform lookups on the parameter W,
125
then concatenated into a dense tensor.
126

127 128
The input Ids can carry the LoD (Level of Details) information,
or not. And the output only shares the LoD information with input Ids.
C
chengduoZH 已提交
129 130 131 132 133

)DOC");
  }
};

H
Huihuang Zheng 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
DECLARE_NO_NEED_BUFFER_VARS_INFERENCE(LookupTableGradOpNoBuffer, "W");

class LookupTableGradOpDescMaker : public framework::SingleGradOpDescMaker {
 public:
  using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;

 protected:
  std::unique_ptr<framework::OpDesc> Apply() const override {
    std::unique_ptr<framework::OpDesc> op(new framework::OpDesc());

    op->SetType("lookup_table_grad");

    op->SetInput("W", Input("W"));
    op->SetInput("Ids", Input("Ids"));
    op->SetInput(framework::GradVarName("Out"), OutputGrad("Out"));

    op->SetOutput(framework::GradVarName("W"), InputGrad("W"));

    op->SetAttrMap(Attrs());
    return op;
  }
};

157 158 159 160
class LookupTableOpGrad : public framework::OperatorWithKernel {
 public:
  using framework::OperatorWithKernel::OperatorWithKernel;

161
  void InferShape(framework::InferShapeContext* ctx) const override {
Q
Qiao Longfei 已提交
162 163
    auto table_dims = ctx->GetInputDim("W");
    ctx->SetOutputDim(framework::GradVarName("W"), table_dims);
164
  }
Y
Yu Yang 已提交
165

166
 protected:
167
  framework::OpKernelType GetExpectedKernelType(
Y
Yu Yang 已提交
168
      const framework::ExecutionContext& ctx) const override {
H
Huihuang Zheng 已提交
169 170
    auto data_type = framework::GetDataTypeOfVar(
        ctx.InputVar(framework::GradVarName("Out")));
Q
qiaolongfei 已提交
171
    return framework::OpKernelType(data_type, ctx.device_context());
Y
Yu Yang 已提交
172
  }
173 174
};

175 176
class LookupTableOpGradVarTypeInference : public framework::VarTypeInference {
 public:
M
minqiyang 已提交
177 178 179
  void operator()(framework::InferVarTypeContext* ctx) const override {
    auto out_var_name = ctx->Output(framework::GradVarName("W")).front();
    auto attr = ctx->GetAttr("is_sparse");
180 181
    bool is_sparse = boost::get<bool>(attr);
    if (is_sparse) {
M
minqiyang 已提交
182 183
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to SelectedRows";
M
minqiyang 已提交
184
      ctx->SetType(out_var_name, framework::proto::VarType::SELECTED_ROWS);
185
    } else {
M
minqiyang 已提交
186 187
      VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W")
              << " is set to LoDTensor";
M
minqiyang 已提交
188
      ctx->SetType(out_var_name, framework::proto::VarType::LOD_TENSOR);
189
    }
M
minqiyang 已提交
190
    ctx->SetDataType(out_var_name, ctx->GetDataType(ctx->Input("W")[0]));
191 192 193
  }
};

194 195 196 197
}  // namespace operators
}  // namespace paddle

namespace ops = paddle::operators;
H
Huihuang Zheng 已提交
198 199 200
REGISTER_OPERATOR(lookup_table, ops::LookupTableOp, ops::LookupTableOpMaker,
                  ops::LookupTableGradOpDescMaker);

201
REGISTER_OPERATOR(lookup_table_grad, ops::LookupTableOpGrad,
H
Huihuang Zheng 已提交
202
                  ops::LookupTableGradOpNoBuffer,
203 204 205 206 207 208
                  ops::LookupTableOpGradVarTypeInference);

REGISTER_OP_CPU_KERNEL(lookup_table, ops::LookupTableKernel<float>,
                       ops::LookupTableKernel<double>);
REGISTER_OP_CPU_KERNEL(lookup_table_grad, ops::LookupTableGradKernel<float>,
                       ops::LookupTableGradKernel<double>);