initializer.py 35.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
from . import core
19
from .framework import in_dygraph_mode, default_main_program
20
import numpy as np
21
from .core import VarDesc
W
Wu Yi 已提交
22
from . import unique_name
23
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
24

25
__all__ = [
26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
27 28
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
29
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
30
]
31

32 33 34
_global_weight_initializer_ = None
_global_bias_initializer_ = None

35 36 37 38 39 40 41 42 43 44

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
45
    def __init__(self):
46 47
        pass

48
    def __call__(self, param, block=None):
49 50 51 52
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

53 54 55 56 57 58 59 60 61 62
    def _check_block(self, block):
        if block is None:
            if in_dygraph_mode():
                block = default_main_program().global_block()
            else:
                raise ValueError(
                    "The parameter 'block' is needed in static graph mode.")

        return block

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

98 99 100

class ConstantInitializer(Initializer):
    """Implements the constant initializer
101 102

    Args:
D
Double_V 已提交
103
        value (float32): constant value to initialize the variable 
104 105 106 107

    Examples:
        .. code-block:: python

108 109 110
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
111
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
112 113 114 115
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
116

117 118
    """

119
    def __init__(self, value=0.0, force_cpu=False):
120 121 122
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
123
        self._force_cpu = force_cpu
124

125 126
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
127 128

        Args:
129 130 131
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
132 133

        Returns:
134
            The initialization op
135
        """
136 137
        block = self._check_block(block)

138 139
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

155
        op = block.append_op(
156
            type="fill_constant",
157
            outputs={"Out": out_var},
158 159
            attrs={
                "shape": var.shape,
160
                "dtype": int(out_dtype),
161
                "value": float(self._value),
162
                'force_cpu': self._force_cpu
M
minqiyang 已提交
163 164
            },
            stop_gradient=True)
165 166 167 168 169 170 171 172 173

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
174
        if not framework.in_dygraph_mode():
175
            var.op = op
176 177 178 179
        return op


class UniformInitializer(Initializer):
180
    """Implements the random uniform distribution initializer
181 182 183 184 185

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
186 187 188 189 190 191
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
192 193 194 195

    Examples:
        .. code-block:: python

X
xiaoting 已提交
196
            import paddle.fluid as fluid
197
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
198
            fc = fluid.layers.fc(input=x, size=10,
199
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
200 201
    """

202 203 204 205 206 207 208
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
209 210
        assert low is not None
        assert high is not None
211
        assert high >= low
212
        assert seed is not None
213 214 215 216 217
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
218 219 220 221
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
222 223 224
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
225

226 227
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
228 229

        Args:
230 231 232
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
233 234

        Returns:
235
            The initialization op
236
        """
237 238
        block = self._check_block(block)

239
        assert isinstance(block, framework.Block)
240 241
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
242 243
                                 "uniform_random")

D
dzhwinter 已提交
244 245
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
246

X
polish  
Xin Pan 已提交
247
        # to be compatible of fp16 initializers
248
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
249 250
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
251 252
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
253 254 255 256 257 258 259 260
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

261
        op = block.append_op(
262
            type="uniform_random",
263
            inputs={},
W
Wu Yi 已提交
264
            outputs={"Out": out_var},
265 266
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
267
                "dtype": out_dtype,
268 269
                "min": self._low,
                "max": self._high,
270 271 272 273
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
274 275
            },
            stop_gradient=True)
W
Wu Yi 已提交
276

277
        if var.dtype == VarDesc.VarType.FP16:
W
Wu Yi 已提交
278 279 280 281 282 283 284
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
285
        if not framework.in_dygraph_mode():
286
            var.op = op
287
        return op
288 289 290


class NormalInitializer(Initializer):
291 292 293 294 295 296 297 298 299 300
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
301
            import paddle.fluid as fluid
302
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
303 304
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
305

306 307 308 309 310 311 312 313 314 315 316
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

317 318
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
319 320

        Args:
321 322 323
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
324 325

        Returns:
326
            The initialization op
327
        """
328 329
        block = self._check_block(block)

330
        assert isinstance(block, framework.Block)
331

332 333
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
334
                                 "guassian_random")
335

D
dzhwinter 已提交
336 337
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
338 339

        # to be compatible of fp16 initalizers
340
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
341 342
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
343 344
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
345 346 347 348 349 350 351 352
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

353
        op = block.append_op(
354
            type="gaussian_random",
W
Wu Yi 已提交
355
            outputs={"Out": out_var},
356 357
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
358
                "dtype": out_dtype,
359 360
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
361 362
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
363 364
            },
            stop_gradient=True)
W
Wu Yi 已提交
365

366
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
W
Wu Yi 已提交
367 368 369 370 371 372
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
373
        if not framework.in_dygraph_mode():
374
            var.op = op
375
        return op
376 377


378 379 380 381 382 383 384 385 386 387 388
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
389
            import paddle.fluid as fluid
390
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
391 392 393 394 395 396 397 398
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
399
        super(TruncatedNormalInitializer, self).__init__()
400 401 402 403
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

404 405
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
406 407

        Args:
408 409 410
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
411 412

        Returns:
413
            The initialization op
414
        """
415 416
        block = self._check_block(block)

417 418
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
419

420 421
        if self._seed == 0:
            self._seed = block.program.random_seed
422 423

        # to be compatible of fp16 initalizers
424
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
425 426 427
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
428
                    ['truncated_gaussian_random', var.name, 'tmp'])),
429 430 431 432 433 434 435 436
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

437
        op = block.append_op(
438
            type="truncated_gaussian_random",
439
            outputs={"Out": out_var},
440 441
            attrs={
                "shape": var.shape,
442
                "dtype": out_dtype,
443 444 445
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
446 447
            },
            stop_gradient=True)
448

449
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
450 451 452 453 454 455
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
456
        if not framework.in_dygraph_mode():
457
            var.op = op
458 459 460
        return op


461
class XavierInitializer(Initializer):
462
    r"""
463
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
464 465 466
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
467 468 469

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
470 471 472 473 474 475
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

476
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
477
    is
478

Q
qiaolongfei 已提交
479
    .. math::
480

Q
qiaolongfei 已提交
481
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
482 483


Q
qiaolongfei 已提交
484
    Args:
X
xiaoting 已提交
485 486
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
487
                inferred from the variable.
X
xiaoting 已提交
488
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
489 490 491 492 493 494 495 496 497
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
498
            import paddle.fluid as fluid
X
xiaoting 已提交
499
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
500 501 502 503 504 505 506
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
507 508 509 510 511 512 513 514
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

515 516
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
517 518

        Args:
519 520 521
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
522 523

        Returns:
524
            The initialization op
525
        """
526 527
        block = self._check_block(block)

528
        assert isinstance(block, framework.Block)
529 530
        check_variable_and_dtype(var, "Out",
                                 ["uint16", "float16", "float32", "float64"],
531 532
                                 "xavier_init")

533 534 535 536 537 538
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
539 540 541
        if self._seed == 0:
            self._seed = block.program.random_seed

542
        # to be compatible of fp16 initalizers
543 544
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
545 546 547 548 549 550 551 552 553 554 555 556
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

557 558
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
559
            op = block.append_op(
560
                type="uniform_random",
561
                inputs={},
562
                outputs={"Out": out_var},
563
                attrs={
564 565
                    "shape": out_var.shape,
                    "dtype": out_dtype,
566 567 568
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
569 570
                },
                stop_gradient=True)
571 572 573

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
574
            op = block.append_op(
575
                type="gaussian_random",
576
                outputs={"Out": out_var},
577
                attrs={
578 579
                    "shape": out_var.shape,
                    "dtype": out_dtype,
580 581 582
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
583 584
                },
                stop_gradient=True)
585

586 587
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
588 589 590 591 592 593 594
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
595
        if not framework.in_dygraph_mode():
596
            var.op = op
597
        return op
598 599 600


class MSRAInitializer(Initializer):
601
    r"""Implements the MSRA initializer a.k.a. Kaiming Initializer
602 603

    This class implements the weight initialization from the paper
604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
623 624 625
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
626 627 628 629 630 631

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
632

633
            import paddle
X
xsrobin 已提交
634
            import paddle.fluid as fluid
635
            paddle.enable_static()
D
Double_V 已提交
636
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
637 638
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
639

640 641 642 643 644 645 646 647 648 649 650 651
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

652 653
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
654 655

        Args:
656 657 658
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
659 660

        Returns:
661
            The initialization op
662
        """
663 664
        block = self._check_block(block)

665 666 667 668 669 670 671
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
672 673 674
        if self._seed == 0:
            self._seed = block.program.random_seed

675
        # to be compatible of fp16 initalizers
676 677
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
678 679 680 681 682 683 684 685 686 687 688 689
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

690 691
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
692
            op = block.append_op(
693
                type="uniform_random",
694
                inputs={},
695
                outputs={"Out": out_var},
696
                attrs={
697 698
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
699 700 701
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
702 703
                },
                stop_gradient=True)
704 705 706

        else:
            std = np.sqrt(2.0 / float(fan_in))
707
            op = block.append_op(
708
                type="gaussian_random",
709
                outputs={"Out": out_var},
710
                attrs={
711 712
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
713 714 715
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
716 717
                },
                stop_gradient=True)
718

719 720
        if var.dtype == VarDesc.VarType.FP16 or (
                var.dtype == VarDesc.VarType.BF16 and not self._uniform):
721 722 723 724 725 726 727
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
728
        if not framework.in_dygraph_mode():
729
            var.op = op
730
        return op
731 732


733
class BilinearInitializer(Initializer):
734
    """
735 736 737
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
738 739 740 741 742

    Examples:

        .. code-block:: python

743
            import math
744 745 746 747 748

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
749 750
            factor = 2
            C = 2
D
Double_V 已提交
751 752
            B = 8
            H = W = 32
753 754 755 756
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
C
cnn 已提交
757
            conv_up = nn.Conv2DTranspose(3,
758 759 760 761 762 763 764 765 766 767 768
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
769 770 771 772
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
773 774
    interpolation unchanged during training.

775 776 777 778 779 780 781
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

782 783
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
784 785

        Args:
786 787 788
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
789 790

        Returns:
791
            The initialization op
792
        """
793 794
        block = self._check_block(block)

795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

819
        # to be compatible of fp16 initalizers
820 821 822
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
823 824 825 826 827 828 829 830 831 832 833 834 835
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
836 837 838
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
839 840
            raise TypeError("Unsupported dtype %s", var.dtype)

841 842 843 844
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
845
            outputs={'Out': [out_var]},
846
            attrs={
847
                'dtype': out_dtype,
848 849 850
                'shape': list(shape),
                value_name: values
            })
851

852 853 854
        if var.dtype in [
                VarDesc.VarType.FP16, VarDesc.VarType.BF16, VarDesc.VarType.FP64
        ]:
855 856 857 858 859 860 861
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
862
        if not framework.in_dygraph_mode():
863
            var.op = op
864 865 866
        return op


867 868
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
869
    This op initialize the variable by numpy array.
870 871 872 873

    Args:
        value (numpy): numpy array to initialize the variable

874 875 876
    Returns:
        A Tensor variable initialized by numpy.

877 878 879
    Examples:
        .. code-block:: python

880
            import paddle.fluid as fluid
881 882
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
883 884 885 886 887 888 889 890 891 892
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

893 894
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
895 896

        Args:
897 898 899
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
900 901

        Returns:
902
            The initialization op
903
        """
904 905
        block = self._check_block(block)

906 907
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
908 909

        # to be compatible of fp16 initalizers
910
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
911 912 913 914 915 916 917 918 919 920 921 922 923 924 925
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

        if out_dtype == VarDesc.VarType.FP32:
926
            value_name = "fp32_values"
927 928
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
929
            value_name = "int32_values"
930
            values = [int(v) for v in np_value.flat]
931 932
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
933
        if self._value.size > 1024 * 1024 * 1024:
934 935
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
936
        op = block.append_op(
937
            type='assign_value',
938
            outputs={'Out': out_var},
939
            attrs={
940
                'dtype': out_dtype,
941
                'shape': list(self._value.shape),
942 943 944
                value_name: values
            },
            stop_gradient=True)
945

946
        if var.dtype in [VarDesc.VarType.FP16, VarDesc.VarType.BF16]:
947 948 949 950 951 952 953
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
954
        if not framework.in_dygraph_mode():
955
            var.op = op
956 957 958
        return op


959 960 961 962 963 964 965
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
966
    to ``paddle.ParamAttr`` , which is inherited from ``paddle.Tensor`` , and is a persistable Variable.
967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python

986 987 988 989 990
            import paddle
            import paddle.nn as nn

            nn.initializer.set_global_initializer(nn.initializer.Uniform(), nn.initializer.Constant())
            x_var = paddle.uniform((2, 4, 8, 8), dtype='float32', min=-1., max=1.)
991 992 993

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
994 995
            conv1 = nn.Conv2D(4, 6, (3, 3))
            y_var1 = conv1(x_var)
996 997 998 999

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
1000 1001 1002 1003
            conv2 = nn.Conv2D(4, 6, (3, 3), 
                weight_attr=nn.initializer.XavierUniform(),
                bias_attr=nn.initializer.Normal())
            y_var2 = conv2(x_var)
1004 1005

            # Cancel the global initializer in framework, it will takes effect in subsequent code
1006
            nn.initializer.set_global_initializer(None)
1007
    """
1008

1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1046
TruncatedNormal = TruncatedNormalInitializer
1047 1048
Xavier = XavierInitializer
MSRA = MSRAInitializer
1049
Bilinear = BilinearInitializer