initializer.py 29.6 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
import numpy as np
S
rename  
sneaxiy 已提交
19
from .wrapped_decorator import signature_safe_contextmanager
20
from .core import VarDesc
W
Wu Yi 已提交
21
from . import unique_name
22

23
__all__ = [
24 25 26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
    'MSRA', 'force_init_on_cpu', 'init_on_cpu', 'ConstantInitializer',
    'UniformInitializer', 'NormalInitializer', 'TruncatedNormalInitializer',
27 28
    'XavierInitializer', 'BilinearInitializer', 'MSRAInitializer',
    'NumpyArrayInitializer'
29
]
30

31 32 33 34
_force_init_on_cpu_ = False


def force_init_on_cpu():
Q
qiaolongfei 已提交
35 36 37
    """
    The flag of whether force to init variables on CPU.

Q
Qiao Longfei 已提交
38 39
    Returns:
        bool: the state if we should force init on CPU.
40

Q
qiaolongfei 已提交
41
    Examples:
Q
Qiao Longfei 已提交
42

Q
qiaolongfei 已提交
43 44
        .. code-block:: python

45 46 47
	    if fluid.initializer.force_init_on_cpu():
    		step = fluid.layers.create_global_var(
        	    shape=[2,3], value=1.0, dtype='float32')
Q
qiaolongfei 已提交
48 49

    """
50 51 52
    return _force_init_on_cpu_


S
rename  
sneaxiy 已提交
53
@signature_safe_contextmanager
54 55
def init_on_cpu():
    """
Q
qiaolongfei 已提交
56
    Force the variable to be inited on CPU.
57 58

    Examples:
Q
qiaolongfei 已提交
59 60
        .. code-block:: python

61 62 63
	    with fluid.initializer.init_on_cpu():
    		step = fluid.layers.create_global_var(
        	    shape=[2,3], value=1.0, dtype='float32')
64 65 66 67 68 69 70 71 72

    """
    global _force_init_on_cpu_

    pre_state = force_init_on_cpu()
    _force_init_on_cpu_ = True
    yield
    _force_init_on_cpu_ = pre_state

73 74 75 76 77 78 79 80 81 82

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
83
    def __init__(self):
84 85 86 87 88 89 90
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

126 127 128

class ConstantInitializer(Initializer):
    """Implements the constant initializer
129 130 131 132 133 134 135

    Args:
        value (float): constant value to initialize the variable

    Examples:
        .. code-block:: python

136 137 138 139
    	    x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.Constant(value=2.0))

140 141
    """

142
    def __init__(self, value=0.0, force_cpu=False):
143 144 145
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
146
        self._force_cpu = force_cpu
147 148 149 150 151 152 153 154 155 156 157 158 159 160

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

176
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
177
        op = block._prepend_op(
178
            type="fill_constant",
179
            outputs={"Out": out_var},
180 181
            attrs={
                "shape": var.shape,
182
                "dtype": int(out_dtype),
183 184
                "value": float(self._value),
                'force_cpu': self._force_cpu or force_init_on_cpu()
M
minqiyang 已提交
185 186
            },
            stop_gradient=True)
187 188 189 190 191 192 193 194 195

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
196
        if not framework.in_dygraph_mode():
197
            var.op = op
198 199 200 201
        return op


class UniformInitializer(Initializer):
202
    """Implements the random uniform distribution initializer
203 204 205 206 207 208 209 210 211

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
212 213
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
214
            fc = fluid.layers.fc(input=x, size=10,
215
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
216 217 218 219 220
    """

    def __init__(self, low=-1.0, high=1.0, seed=0):
        assert low is not None
        assert high is not None
221
        assert high >= low
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
        assert seed is not None
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
242 243
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
244

X
polish  
Xin Pan 已提交
245
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
246 247 248
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
249 250
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
251 252 253 254 255 256 257 258
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
259
        op = block._prepend_op(
260
            type="uniform_random",
W
Wu Yi 已提交
261
            outputs={"Out": out_var},
262 263
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
264
                "dtype": out_dtype,
265 266 267
                "min": self._low,
                "max": self._high,
                "seed": self._seed
M
minqiyang 已提交
268 269
            },
            stop_gradient=True)
W
Wu Yi 已提交
270 271 272 273 274 275 276 277 278

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
279
        if not framework.in_dygraph_mode():
280
            var.op = op
281
        return op
282 283 284


class NormalInitializer(Initializer):
285 286 287 288 289 290 291 292 293 294
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

295 296 297 298
	    x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))

299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
324 325
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
326 327 328 329 330

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
331 332
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
333 334 335 336 337 338 339 340
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
341
        op = block._prepend_op(
342
            type="gaussian_random",
W
Wu Yi 已提交
343
            outputs={"Out": out_var},
344 345
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
346
                "dtype": out_dtype,
347 348
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
349 350
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
351 352
            },
            stop_gradient=True)
W
Wu Yi 已提交
353 354 355 356 357 358 359 360

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
361
        if not framework.in_dygraph_mode():
362
            var.op = op
363
        return op
364 365


366 367 368 369 370 371 372 373 374 375 376
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
377 378
            import paddle.fluid as fluid
            x = fluid.layers.data(name='x', shape=[1], dtype='float32')
379 380 381 382 383 384 385 386
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
387
        super(TruncatedNormalInitializer, self).__init__()
388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
408 409 410 411 412 413

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
414
                    ['truncated_gaussian_random', var.name, 'tmp'])),
415 416 417 418 419 420 421 422
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

423 424
        op = block._prepend_op(
            type="truncated_gaussian_random",
425
            outputs={"Out": out_var},
426 427
            attrs={
                "shape": var.shape,
428
                "dtype": out_dtype,
429 430 431
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
432 433
            },
            stop_gradient=True)
434 435 436 437 438 439 440 441

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
442
        if not framework.in_dygraph_mode():
443
            var.op = op
444 445 446
        return op


447
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
448
    """
449
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
450 451 452
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
453 454 455

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
456 457 458 459 460 461
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

462
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
463
    is
464

Q
qiaolongfei 已提交
465
    .. math::
466

Q
qiaolongfei 已提交
467
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
468 469


Q
qiaolongfei 已提交
470 471 472 473 474 475 476 477 478 479 480 481 482 483
    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for Xavier initialization. If None, it is
                inferred from the variable.
        fan_out (float): fan_out for Xavier initialization. If None, it is
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
484 485
            import paddle.fluid as fluid
            queries = fluid.layers.data(name='x', shape=[1], dtype='float32')
Q
qiaolongfei 已提交
486 487 488 489 490 491 492
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
520 521 522
        if self._seed == 0:
            self._seed = block.program.random_seed

523 524 525 526 527 528 529 530 531 532 533 534 535 536
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

537 538
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
539
            op = block._prepend_op(
540
                type="uniform_random",
541
                outputs={"Out": out_var},
542
                attrs={
543 544
                    "shape": out_var.shape,
                    "dtype": out_dtype,
545 546 547
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
548 549
                },
                stop_gradient=True)
550 551 552

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
553
            op = block._prepend_op(
554
                type="gaussian_random",
555
                outputs={"Out": out_var},
556
                attrs={
557 558
                    "shape": out_var.shape,
                    "dtype": out_dtype,
559 560 561
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
562 563
                },
                stop_gradient=True)
564 565 566 567 568 569 570 571 572

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
573
        if not framework.in_dygraph_mode():
574
            var.op = op
575
        return op
576 577 578 579 580 581


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
        fan_in (float): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
610 611 612 613
		
	    x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.MSRA(uniform=False))
614

615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
645 646 647
        if self._seed == 0:
            self._seed = block.program.random_seed

648 649 650 651 652 653 654 655 656 657 658 659 660 661
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

662 663
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
664
            op = block._prepend_op(
665
                type="uniform_random",
666
                outputs={"Out": out_var},
667
                attrs={
668 669
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
670 671 672
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
673 674
                },
                stop_gradient=True)
675 676 677

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
678
            op = block._prepend_op(
679
                type="gaussian_random",
680
                outputs={"Out": out_var},
681
                attrs={
682 683
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
684 685 686
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
687 688
                },
                stop_gradient=True)
689 690 691 692 693 694 695 696 697

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
698
        if not framework.in_dygraph_mode():
699
            var.op = op
700
        return op
701 702


703
class BilinearInitializer(Initializer):
704
    """
705 706 707
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
708 709 710 711 712

    Examples:

        .. code-block:: python

713 714
	    factor = 2
	    C = 2
715
	    w_attr = fluid.param_attr.ParamAttr(
716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
		learning_rate=0., 
		regularizer=fluid.regularizer.L2Decay(0.),
                initializer=fluid.initializer.Bilinear())
	    x = fluid.layers.data(name="data", shape=[3, 32, 32], 
				  dtype="float32")
	    conv_up = fluid.layers.conv2d_transpose(
    		input=x,
    		num_filters=C,
    		output_size=None,
    		filter_size=2 * factor - factor % 2,
    		padding=int(math.ceil((factor - 1) / 2.)),
    		stride=factor,
    		groups=C,
    		param_attr=w_attr,
    		bias_attr=False)
731 732

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
733 734 735 736 737
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
738 739
    interpolation unchanged during training.

740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
        """Add biliear initialization ops for a variable

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
756
            Operator: the initialization op
757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

787 788 789 790 791 792 793 794 795 796 797 798 799 800 801
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
802 803 804 805 806 807 808 809
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
810
            outputs={'Out': [out_var]},
811
            attrs={
812
                'dtype': out_dtype,
813 814 815
                'shape': list(shape),
                value_name: values
            })
816 817 818 819 820 821 822 823 824

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
825
        if not framework.in_dygraph_mode():
826
            var.op = op
827 828 829
        return op


830 831 832 833 834 835 836 837 838
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array

    Args:
        value (numpy): numpy array to initialize the variable

    Examples:
        .. code-block:: python

839
            x = fluid.layers.data(name="x", shape=[5], dtype='float32')
840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

880
        # Initialization Ops should be prepended and not appended
881
        if out_dtype == VarDesc.VarType.FP32:
882
            value_name = "fp32_values"
883 884
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
885
            value_name = "int32_values"
886
            values = [int(v) for v in np_value.flat]
887 888
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
889
        if self._value.size > 1024 * 1024 * 1024:
890 891 892 893
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
894
            outputs={'Out': out_var},
895
            attrs={
896
                'dtype': out_dtype,
897
                'shape': list(self._value.shape),
898 899 900
                value_name: values
            },
            stop_gradient=True)
901 902 903 904 905 906 907 908 909

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
910
        if not framework.in_dygraph_mode():
911
            var.op = op
912 913 914
        return op


915 916 917 918 919 920 921 922 923 924 925 926
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
927
TruncatedNormal = TruncatedNormalInitializer
928 929
Xavier = XavierInitializer
MSRA = MSRAInitializer
930
Bilinear = BilinearInitializer