initializer.py 35.0 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18
from . import core
19
from .framework import in_dygraph_mode, default_main_program
20
import numpy as np
21
from .core import VarDesc
W
Wu Yi 已提交
22
from . import unique_name
23
from .data_feeder import check_variable_and_dtype, check_type, check_dtype
24

25
__all__ = [
26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
27 28
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
29
    'MSRAInitializer', 'NumpyArrayInitializer', 'set_global_initializer'
30
]
31

32 33 34
_global_weight_initializer_ = None
_global_bias_initializer_ = None

35 36 37 38 39 40 41 42 43 44

class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
45
    def __init__(self):
46 47
        pass

48
    def __call__(self, param, block=None):
49 50 51 52
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

53 54 55 56 57 58 59 60 61 62
    def _check_block(self, block):
        if block is None:
            if in_dygraph_mode():
                block = default_main_program().global_block()
            else:
                raise ValueError(
                    "The parameter 'block' is needed in static graph mode.")

        return block

63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

98 99 100

class ConstantInitializer(Initializer):
    """Implements the constant initializer
101 102

    Args:
D
Double_V 已提交
103
        value (float32): constant value to initialize the variable 
104 105 106 107

    Examples:
        .. code-block:: python

108 109 110
            import paddle
            import paddle.fluid as fluid
            paddle.enable_static()
D
Double_V 已提交
111
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
112 113 114 115
            fc = fluid.layers.fc(
                input=x,
                size=10,
                param_attr=fluid.initializer.Constant(value=2.0))
116

117 118
    """

119
    def __init__(self, value=0.0, force_cpu=False):
120 121 122
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
123
        self._force_cpu = force_cpu
124

125 126
    def __call__(self, var, block=None):
        """Initialize the input tensor with constant.
127 128

        Args:
129 130 131
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
132 133

        Returns:
134
            The initialization op
135
        """
136 137
        block = self._check_block(block)

138 139
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

155
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
156
        op = block._prepend_op(
157
            type="fill_constant",
158
            outputs={"Out": out_var},
159 160
            attrs={
                "shape": var.shape,
161
                "dtype": int(out_dtype),
162
                "value": float(self._value),
163
                'force_cpu': self._force_cpu
M
minqiyang 已提交
164 165
            },
            stop_gradient=True)
166 167 168 169 170 171 172 173 174

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
175
        if not framework.in_dygraph_mode():
176
            var.op = op
177 178 179 180
        return op


class UniformInitializer(Initializer):
181
    """Implements the random uniform distribution initializer
182 183 184 185 186

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
187 188 189 190 191 192
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
193 194 195 196

    Examples:
        .. code-block:: python

X
xiaoting 已提交
197
            import paddle.fluid as fluid
198
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
199
            fc = fluid.layers.fc(input=x, size=10,
200
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
201 202
    """

203 204 205 206 207 208 209
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
210 211
        assert low is not None
        assert high is not None
212
        assert high >= low
213
        assert seed is not None
214 215 216 217 218
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
219 220 221 222
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
223 224 225
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
226

227 228
    def __call__(self, var, block=None):
        """Initialize the input tensor with Uniform distribution.
229 230

        Args:
231 232 233
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
234 235

        Returns:
236
            The initialization op
237
        """
238 239
        block = self._check_block(block)

240
        assert isinstance(block, framework.Block)
241 242 243
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "uniform_random")

244
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
245 246
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
247

X
polish  
Xin Pan 已提交
248
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
249 250 251
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
252 253
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
254 255 256 257 258 259 260 261
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
262
        op = block._prepend_op(
263
            type="uniform_random",
264
            inputs={},
W
Wu Yi 已提交
265
            outputs={"Out": out_var},
266 267
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
268
                "dtype": out_dtype,
269 270
                "min": self._low,
                "max": self._high,
271 272 273 274
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
275 276
            },
            stop_gradient=True)
W
Wu Yi 已提交
277 278 279 280 281 282 283 284 285

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
286
        if not framework.in_dygraph_mode():
287
            var.op = op
288
        return op
289 290 291


class NormalInitializer(Initializer):
292 293 294 295 296 297 298 299 300 301
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
302
            import paddle.fluid as fluid
303
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
304 305
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
306

307 308 309 310 311 312 313 314 315 316 317
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

318 319
    def __call__(self, var, block=None):
        """Initialize the input tensor with Normal distribution.
320 321

        Args:
322 323 324
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
325 326

        Returns:
327
            The initialization op
328
        """
329 330
        block = self._check_block(block)

331
        assert isinstance(block, framework.Block)
332 333 334

        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "guassian_random")
335
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
336 337
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
338 339 340 341 342

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
343 344
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
345 346 347 348 349 350 351 352
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
353
        op = block._prepend_op(
354
            type="gaussian_random",
W
Wu Yi 已提交
355
            outputs={"Out": out_var},
356 357
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
358
                "dtype": out_dtype,
359 360
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
361 362
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
363 364
            },
            stop_gradient=True)
W
Wu Yi 已提交
365 366 367 368 369 370 371 372

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
373
        if not framework.in_dygraph_mode():
374
            var.op = op
375
        return op
376 377


378 379 380 381 382 383 384 385 386 387 388
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
389
            import paddle.fluid as fluid
390
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
391 392 393 394 395 396 397 398
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
399
        super(TruncatedNormalInitializer, self).__init__()
400 401 402 403
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

404 405
    def __call__(self, var, block=None):
        """Initialize the input tensor with TruncatedNormal distribution.
406 407

        Args:
408 409 410
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
411 412

        Returns:
413
            The initialization op
414
        """
415 416
        block = self._check_block(block)

417 418 419 420 421
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
422 423 424 425 426 427

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
428
                    ['truncated_gaussian_random', var.name, 'tmp'])),
429 430 431 432 433 434 435 436
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

437 438
        op = block._prepend_op(
            type="truncated_gaussian_random",
439
            outputs={"Out": out_var},
440 441
            attrs={
                "shape": var.shape,
442
                "dtype": out_dtype,
443 444 445
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
446 447
            },
            stop_gradient=True)
448 449 450 451 452 453 454 455

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
456
        if not framework.in_dygraph_mode():
457
            var.op = op
458 459 460
        return op


461
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
462
    """
463
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
464 465 466
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
467 468 469

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
470 471 472 473 474 475
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

476
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
477
    is
478

Q
qiaolongfei 已提交
479
    .. math::
480

Q
qiaolongfei 已提交
481
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
482 483


Q
qiaolongfei 已提交
484
    Args:
X
xiaoting 已提交
485 486
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
487
                inferred from the variable.
X
xiaoting 已提交
488
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
489 490 491 492 493 494 495 496 497
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
498
            import paddle.fluid as fluid
X
xiaoting 已提交
499
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
500 501 502 503 504 505 506
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
507 508 509 510 511 512 513 514
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

515 516
    def __call__(self, var, block=None):
        """Initialize the input tensor with Xavier initialization.
517 518

        Args:
519 520 521
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
522 523

        Returns:
524
            The initialization op
525
        """
526 527
        block = self._check_block(block)

528
        assert isinstance(block, framework.Block)
529 530 531
        check_variable_and_dtype(var, "Out", ["float16", "float32", "float64"],
                                 "xavier_init")

532 533 534 535 536 537
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
538 539 540
        if self._seed == 0:
            self._seed = block.program.random_seed

541 542 543 544 545 546 547 548 549 550 551 552 553 554
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

555 556
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
557
            op = block._prepend_op(
558
                type="uniform_random",
559
                inputs={},
560
                outputs={"Out": out_var},
561
                attrs={
562 563
                    "shape": out_var.shape,
                    "dtype": out_dtype,
564 565 566
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
567 568
                },
                stop_gradient=True)
569 570 571

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
572
            op = block._prepend_op(
573
                type="gaussian_random",
574
                outputs={"Out": out_var},
575
                attrs={
576 577
                    "shape": out_var.shape,
                    "dtype": out_dtype,
578 579 580
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
581 582
                },
                stop_gradient=True)
583 584 585 586 587 588 589 590 591

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
592
        if not framework.in_dygraph_mode():
593
            var.op = op
594
        return op
595 596 597 598 599 600


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
620 621 622
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
623 624 625 626 627 628

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
629

630
            import paddle
X
xsrobin 已提交
631
            import paddle.fluid as fluid
632
            paddle.enable_static()
D
Double_V 已提交
633
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
634 635
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
636

637 638 639 640 641 642 643 644 645 646 647 648
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

649 650
    def __call__(self, var, block=None):
        """Initialize the input tensor with MSRA initialization.
651 652

        Args:
653 654 655
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
656 657

        Returns:
658
            The initialization op
659
        """
660 661
        block = self._check_block(block)

662 663 664 665 666 667 668
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
669 670 671
        if self._seed == 0:
            self._seed = block.program.random_seed

672 673 674 675 676 677 678 679 680 681 682 683 684 685
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

686 687
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
688
            op = block._prepend_op(
689
                type="uniform_random",
690
                inputs={},
691
                outputs={"Out": out_var},
692
                attrs={
693 694
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
695 696 697
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
698 699
                },
                stop_gradient=True)
700 701 702

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
703
            op = block._prepend_op(
704
                type="gaussian_random",
705
                outputs={"Out": out_var},
706
                attrs={
707 708
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
709 710 711
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
712 713
                },
                stop_gradient=True)
714 715 716 717 718 719 720 721 722

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
723
        if not framework.in_dygraph_mode():
724
            var.op = op
725
        return op
726 727


728
class BilinearInitializer(Initializer):
729
    """
730 731 732
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
733 734 735 736 737

    Examples:

        .. code-block:: python

738
            import math
739 740 741 742 743

            import paddle
            import paddle.nn as nn
            from paddle.regularizer import L2Decay

X
xsrobin 已提交
744 745
            factor = 2
            C = 2
D
Double_V 已提交
746 747
            B = 8
            H = W = 32
748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763
            w_attr = paddle.ParamAttr(learning_rate=0.,
                                      regularizer=L2Decay(0.),
                                      initializer=nn.initializer.Bilinear())
            data = paddle.rand([B, 3, H, W], dtype='float32')
            conv_up = nn.ConvTranspose2d(3,
                                         out_channels=C,
                                         kernel_size=2 * factor - factor % 2,
                                         padding=int(
                                             math.ceil((factor - 1) / 2.)),
                                         stride=factor,
                                         weight_attr=w_attr,
                                         bias_attr=False)
            x = conv_up(data)

    Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
    convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
764 765 766 767
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
768 769
    interpolation unchanged during training.

770 771 772 773 774 775 776
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

777 778
    def __call__(self, var, block=None):
        """Initialize the input tensor with Bilinear initialization.
779 780

        Args:
781 782 783
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
784 785

        Returns:
786
            The initialization op
787
        """
788 789
        block = self._check_block(block)

790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

814
        # to be compatible of fp16 initalizers
815
        if var.dtype == VarDesc.VarType.FP16 or var.dtype == VarDesc.VarType.FP64:
816 817 818 819 820 821 822 823 824 825 826 827 828
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
829 830 831
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
832 833
            raise TypeError("Unsupported dtype %s", var.dtype)

834 835 836 837
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
838
            outputs={'Out': [out_var]},
839
            attrs={
840
                'dtype': out_dtype,
841 842 843
                'shape': list(shape),
                value_name: values
            })
844

845
        if var.dtype == VarDesc.VarType.FP16 or var.dtype == VarDesc.VarType.FP64:
846 847 848 849 850 851 852
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
853
        if not framework.in_dygraph_mode():
854
            var.op = op
855 856 857
        return op


858 859
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
860
    This op initialize the variable by numpy array.
861 862 863 864

    Args:
        value (numpy): numpy array to initialize the variable

865 866 867
    Returns:
        A Tensor variable initialized by numpy.

868 869 870
    Examples:
        .. code-block:: python

871
            import paddle.fluid as fluid
872 873
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
874 875 876 877 878 879 880 881 882 883
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

884 885
    def __call__(self, var, block=None):
        """Initialize the input tensor with Numpy array.
886 887

        Args:
888 889 890
            var(Tensor): Tensor that needs to be initialized.
            block(Block, optional): The block in which initialization ops
                   should be added. Used in static graph only, default None.
891 892

        Returns:
893
            The initialization op
894
        """
895 896
        block = self._check_block(block)

897 898
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

916
        # Initialization Ops should be prepended and not appended
917
        if out_dtype == VarDesc.VarType.FP32:
918
            value_name = "fp32_values"
919 920
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
921
            value_name = "int32_values"
922
            values = [int(v) for v in np_value.flat]
923 924
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
925
        if self._value.size > 1024 * 1024 * 1024:
926 927 928 929
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
930
            outputs={'Out': out_var},
931
            attrs={
932
                'dtype': out_dtype,
933
                'shape': list(self._value.shape),
934 935 936
                value_name: values
            },
            stop_gradient=True)
937 938 939 940 941 942 943 944 945

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
946
        if not framework.in_dygraph_mode():
947
            var.op = op
948 949 950
        return op


951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022
def set_global_initializer(weight_init, bias_init=None):
    """
    This API is used to set up global model parameter initializer in framework.

    After this API is invoked, the global initializer will takes effect in subsequent code.

    The model parameters include ``weight`` and ``bias`` . In the framework, they correspond 
    to ``fluid.Parameter`` , which is inherited from ``fluid.Variable`` , and is a persistable Variable.
    This API only takes effect for model parameters, not for variables created through apis such as 
    :ref:`api_fluid_layers_create_global_var` , :ref:`api_fluid_layers_create_tensor`.
    
    If the initializer is also set up by ``param_attr`` or ``bias_attr`` when creating a network layer,
    the global initializer setting here will not take effect because it has a lower priority.

    If you want to cancel the global initializer in framework, please set global initializer to ``None`` .

    Args:
        weight_init (Initializer): set the global initializer for ``weight`` of model parameters.
        bias_init (Initializer, optional): set the global initializer for ``bias`` of model parameters. 
            Default: None.

    Returns:
        None

    Examples:
        .. code-block:: python
            import paddle.fluid as fluid

            fluid.set_global_initializer(fluid.initializer.Uniform(), fluid.initializer.Constant())
            x = fluid.data(name="x", shape=[1, 3, 32, 32])

            # The weight of conv1 is initialized by Uniform
            # The bias of conv1 is initialized by Constant
            conv1 = fluid.layers.conv2d(x, 5, 3)

            # If set param_attr/bias_attr too, global initializer will not take effect
            # The weight of conv2 is initialized by Xavier
            # The bias of conv2 is initialized by Normal
            conv2 = fluid.layers.conv2d(conv1, 5, 3, 
                param_attr=fluid.initializer.Xavier(), 
                bias_attr=fluid.initializer.Normal())

            # Cancel the global initializer in framework, it will takes effect in subsequent code
            fluid.set_global_initializer(None)


    """
    check_type(weight_init, 'weight_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_weight_initializer_
    _global_weight_initializer_ = weight_init

    check_type(bias_init, 'bias_init', (Initializer, type(None)),
               'set_global_initializer')
    global _global_bias_initializer_
    _global_bias_initializer_ = bias_init


def _global_weight_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_weight_initializer_


def _global_bias_initializer():
    """
    Return the global weight initializer, The user doesn't need to use it.
    """
    return _global_bias_initializer_


1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
1035
TruncatedNormal = TruncatedNormalInitializer
1036 1037
Xavier = XavierInitializer
MSRA = MSRAInitializer
1038
Bilinear = BilinearInitializer