Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
6da552a2
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
6da552a2
编写于
10月 09, 2020
作者:
Z
zhulei
提交者:
GitHub
10月 09, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Update initializer examples of Bilinear (#27709)
上级
7ecbc465
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
21 addition
and
20 deletion
+21
-20
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+21
-20
未找到文件。
python/paddle/fluid/initializer.py
浏览文件 @
6da552a2
...
...
@@ -729,31 +729,32 @@ class BilinearInitializer(Initializer):
.. code-block:: python
import paddle.fluid as fluid
import math
import paddle
import paddle.nn as nn
from paddle.regularizer import L2Decay
factor = 2
C = 2
B = 8
H = W = 32
w_attr = fluid.param_attr.ParamAttr(
learning_rate=0.,
regularizer=fluid.regularizer.L2Decay(0.),
initializer=fluid.initializer.Bilinear())
x = fluid.data(name="data", shape=[B, 3, H, W],
dtype="float32")
conv_up = fluid.layers.conv2d_transpose(
input=x,
num_filters=C,
output_size=None,
filter_size=2 * factor - factor % 2,
padding=int(math.ceil((factor - 1) / 2.)),
stride=factor,
groups=C,
param_attr=w_attr,
bias_attr=False)
Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
w_attr = paddle.ParamAttr(learning_rate=0.,
regularizer=L2Decay(0.),
initializer=nn.initializer.Bilinear())
data = paddle.rand([B, 3, H, W], dtype='float32')
conv_up = nn.ConvTranspose2d(3,
out_channels=C,
kernel_size=2 * factor - factor % 2,
padding=int(
math.ceil((factor - 1) / 2.)),
stride=factor,
weight_attr=w_attr,
bias_attr=False)
x = conv_up(data)
Where, `out_channels=C` and `groups=C` means this is channel-wise transposed
convolution. The filter shape will be (C, 1, K, K) where K is `kernel_size`,
This initializer will set a (K, K) interpolation kernel for every channel
of the filter identically. The resulting shape of the output feature map
will be (B, C, factor * H, factor * W). Note that the learning rate and the
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录