initializer.py 30.5 KB
Newer Older
1
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
D
dzhwinter 已提交
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6
#
D
dzhwinter 已提交
7
#     http://www.apache.org/licenses/LICENSE-2.0
D
dzhwinter 已提交
8
#
D
dzhwinter 已提交
9 10 11 12 13 14
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

17
from . import framework
18 19
from . import core
from .framework import in_dygraph_mode
20
import numpy as np
S
rename  
sneaxiy 已提交
21
from .wrapped_decorator import signature_safe_contextmanager
22
from .core import VarDesc
W
Wu Yi 已提交
23
from . import unique_name
24

25
__all__ = [
26
    'Constant', 'Uniform', 'Normal', 'TruncatedNormal', 'Xavier', 'Bilinear',
27 28 29
    'MSRA', 'ConstantInitializer', 'UniformInitializer', 'NormalInitializer',
    'TruncatedNormalInitializer', 'XavierInitializer', 'BilinearInitializer',
    'MSRAInitializer', 'NumpyArrayInitializer'
30
]
31 32 33 34 35 36 37 38 39 40 41


class Initializer(object):
    """Base class for variable initializers

    Defines the common interface of variable initializers.
    They add operations to the init program that are used
    to initialize variables. Users should not use this class
    directly, but need to use one of its implementations.
    """

W
whs 已提交
42
    def __init__(self):
43 44 45 46 47 48 49
        pass

    def __call__(self, param, block):
        """Add corresponding initialization operations to the network
        """
        raise NotImplementedError()

50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    def _compute_fans(self, var):
        """Compute the fan_in and the fan_out for layers

        This method computes the fan_in and the fan_out
        for neural network layers, if not specified. It is
        not possible to perfectly estimate fan_in and fan_out.
        This method will estimate it correctly for matrix multiply and
        convolutions.

        Args:
            var: variable for which fan_in and fan_out have to be computed

        Returns:
            tuple of two integers (fan_in, fan_out)
        """
        shape = var.shape
        if not shape or len(shape) == 0:
            fan_in = fan_out = 1
        elif len(shape) == 1:
            fan_in = fan_out = shape[0]
        elif len(shape) == 2:
            # This is the case for simple matrix multiply
            fan_in = shape[0]
            fan_out = shape[1]
        else:
            # Assume this to be a convolutional kernel
            # In PaddlePaddle, the shape of the kernel is like:
            # [num_filters, num_filter_channels, ...] where the remaining
            # dimensions are the filter_size
            receptive_field_size = np.prod(shape[2:])
            fan_in = shape[1] * receptive_field_size
            fan_out = shape[0] * receptive_field_size

        return (fan_in, fan_out)

85 86 87

class ConstantInitializer(Initializer):
    """Implements the constant initializer
88 89

    Args:
D
Double_V 已提交
90
        value (float32): constant value to initialize the variable 
91 92 93 94

    Examples:
        .. code-block:: python

95
    	    import paddle.fluid as fluid
D
Double_V 已提交
96
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
97 98 99
	    fc = fluid.layers.fc(input=x, size=10,
    		param_attr=fluid.initializer.Constant(value=2.0))

100 101
    """

102
    def __init__(self, value=0.0, force_cpu=False):
103 104 105
        assert value is not None
        super(ConstantInitializer, self).__init__()
        self._value = value
106
        self._force_cpu = force_cpu
107 108 109 110 111 112 113 114 115 116 117 118 119 120

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135

        # to be compatible of fp16 initializers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['constant_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

136
        # Initialization Ops should be prepended and not appended
W
Wu Yi 已提交
137
        op = block._prepend_op(
138
            type="fill_constant",
139
            outputs={"Out": out_var},
140 141
            attrs={
                "shape": var.shape,
142
                "dtype": int(out_dtype),
143
                "value": float(self._value),
144
                'force_cpu': self._force_cpu
M
minqiyang 已提交
145 146
            },
            stop_gradient=True)
147 148 149 150 151 152 153 154 155

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
156
        if not framework.in_dygraph_mode():
157
            var.op = op
158 159 160 161
        return op


class UniformInitializer(Initializer):
162
    """Implements the random uniform distribution initializer
163 164 165 166 167

    Args:
        low (float): lower boundary of the uniform distribution
        high (float): upper boundary of the uniform distribution
        seed (int): random seed
168 169 170 171 172 173
        diag_num (int): the number of diagonal elements to initialize.
            If set to 0, diagonal initialization will be not performed.
        diag_step (int): Step size between two diagonal elements,
            which is generally the width of the square matrix.
        diag_val (float): the value of the diagonal element to be initialized,
            default 1.0. It takes effect only if the diag_num is greater than 0.
174 175 176 177

    Examples:
        .. code-block:: python

X
xiaoting 已提交
178
            import paddle.fluid as fluid
179
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
180
            fc = fluid.layers.fc(input=x, size=10,
181
    		param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
182 183
    """

184 185 186 187 188 189 190
    def __init__(self,
                 low=-1.0,
                 high=1.0,
                 seed=0,
                 diag_num=0,
                 diag_step=0,
                 diag_val=1.0):
191 192
        assert low is not None
        assert high is not None
193
        assert high >= low
194
        assert seed is not None
195 196 197 198 199
        assert diag_num is not None
        assert diag_step is not None
        assert diag_val is not None
        if diag_num > 0 or diag_step > 0:
            assert (diag_num > 0 and diag_step > 0)
200 201 202 203
        super(UniformInitializer, self).__init__()
        self._low = low
        self._high = high
        self._seed = seed
204 205 206
        self._diag_num = diag_num
        self._diag_step = diag_step
        self._diag_val = diag_val
207 208 209 210 211 212 213 214 215 216 217 218 219 220 221

    def __call__(self, var, block):
        """Add uniform distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
222 223
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
224

X
polish  
Xin Pan 已提交
225
        # to be compatible of fp16 initializers
W
Wu Yi 已提交
226 227 228
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
229 230
                name=unique_name.generate(".".join(
                    ['uniform_random', var.name, 'tmp'])),
W
Wu Yi 已提交
231 232 233 234 235 236 237 238
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
239
        op = block._prepend_op(
240
            type="uniform_random",
241
            inputs={},
W
Wu Yi 已提交
242
            outputs={"Out": out_var},
243 244
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
245
                "dtype": out_dtype,
246 247
                "min": self._low,
                "max": self._high,
248 249 250 251
                "seed": self._seed,
                "diag_num": self._diag_num,
                "diag_step": self._diag_step,
                "diag_val": self._diag_val
M
minqiyang 已提交
252 253
            },
            stop_gradient=True)
W
Wu Yi 已提交
254 255 256 257 258 259 260 261 262

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
263
        if not framework.in_dygraph_mode():
264
            var.op = op
265
        return op
266 267 268


class NormalInitializer(Initializer):
269 270 271 272 273 274 275 276 277 278
    """Implements the Random Normal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xsrobin 已提交
279
            import paddle.fluid as fluid
280
            x = fluid.data(name="data", shape=[None, 32, 32], dtype="float32")
X
xsrobin 已提交
281 282
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0))
283

284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
        super(NormalInitializer, self).__init__()
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
D
dzhwinter 已提交
309 310
        if self._seed == 0:
            self._seed = block.program.random_seed
W
Wu Yi 已提交
311 312 313 314 315

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
316 317
                name=unique_name.generate(".".join(
                    ['gaussian_random', var.name, 'tmp'])),
W
Wu Yi 已提交
318 319 320 321 322 323 324 325
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

W
Wu Yi 已提交
326
        op = block._prepend_op(
327
            type="gaussian_random",
W
Wu Yi 已提交
328
            outputs={"Out": out_var},
329 330
            attrs={
                "shape": var.shape,
W
Wu Yi 已提交
331
                "dtype": out_dtype,
332 333
                "mean": self._mean,
                "std": self._std_dev,
G
gongweibao 已提交
334 335
                "seed": self._seed,
                "use_mkldnn": False
M
minqiyang 已提交
336 337
            },
            stop_gradient=True)
W
Wu Yi 已提交
338 339 340 341 342 343 344 345

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
346
        if not framework.in_dygraph_mode():
347
            var.op = op
348
        return op
349 350


351 352 353 354 355 356 357 358 359 360 361
class TruncatedNormalInitializer(Initializer):
    """Implements the Random TruncatedNormal(Gaussian) distribution initializer

    Args:
        loc (float): mean of the normal distribution
        scale (float): standard deviation of the normal distribution
        seed (int): random seed

    Examples:
        .. code-block:: python

X
xiaoting 已提交
362
            import paddle.fluid as fluid
363
            x = fluid.data(name='x', shape=[None, 1], dtype='float32')
364 365 366 367 368 369 370 371
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
    """

    def __init__(self, loc=0.0, scale=1.0, seed=0):
        assert loc is not None
        assert scale is not None
        assert seed is not None
W
whs 已提交
372
        super(TruncatedNormalInitializer, self).__init__()
373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392
        self._mean = loc
        self._std_dev = scale
        self._seed = seed

    def __call__(self, var, block):
        """Add truncated normal distribution initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        # Initialization Ops should be prepended and not appended
        if self._seed == 0:
            self._seed = block.program.random_seed
393 394 395 396 397 398

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
399
                    ['truncated_gaussian_random', var.name, 'tmp'])),
400 401 402 403 404 405 406 407
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

408 409
        op = block._prepend_op(
            type="truncated_gaussian_random",
410
            outputs={"Out": out_var},
411 412
            attrs={
                "shape": var.shape,
413
                "dtype": out_dtype,
414 415 416
                "mean": self._mean,
                "std": self._std_dev,
                "seed": self._seed
M
minqiyang 已提交
417 418
            },
            stop_gradient=True)
419 420 421 422 423 424 425 426

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})
L
lujun 已提交
427
        if not framework.in_dygraph_mode():
428
            var.op = op
429 430 431
        return op


432
class XavierInitializer(Initializer):
Q
qiaolongfei 已提交
433
    """
434
    This class implements the Xavier weight initializer from the paper
Q
qiaolongfei 已提交
435 436 437
    `Understanding the difficulty of training deep feedforward neural
    networks <http://proceedings.mlr.press/v9/glorot10a/glorot10a.pdf>`_
    by Xavier Glorot and Yoshua Bengio.
438 439 440

    This initializer is designed to keep the scale of the gradients
    approximately same in all the layers. In case of Uniform distribution,
Q
qiaolongfei 已提交
441 442 443 444 445 446
    the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in + fan\_out}}

447
    In case of Normal distribution, the mean is 0 and the standard deviation
Q
qiaolongfei 已提交
448
    is
449

Q
qiaolongfei 已提交
450
    .. math::
451

Q
qiaolongfei 已提交
452
        \sqrt{\\frac{2.0}{fan\_in + fan\_out}}
453 454


Q
qiaolongfei 已提交
455
    Args:
X
xiaoting 已提交
456 457
        uniform (bool,default True): whether to use uniform ,if False use normal distribution
        fan_in (float,default None): fan_in for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
458
                inferred from the variable.
X
xiaoting 已提交
459
        fan_out (float,default None): fan_out for Xavier initialization. If None, it is
Q
qiaolongfei 已提交
460 461 462 463 464 465 466 467 468
                 inferred from the variable.
        seed (int): random seed

    Note:
        It is recommended to set fan_in and fan_out to None for most cases.

    Examples:
        .. code-block:: python

X
xiaoting 已提交
469
            import paddle.fluid as fluid
X
xiaoting 已提交
470
            queries = fluid.data(name='x', shape=[None,1], dtype='float32')
Q
qiaolongfei 已提交
471 472 473 474 475 476 477
            fc = fluid.layers.fc(
                input=queries, size=10,
                param_attr=fluid.initializer.Xavier(uniform=False))

    """

    def __init__(self, uniform=True, fan_in=None, fan_out=None, seed=0):
478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504
        assert uniform is not None
        assert seed is not None
        super(XavierInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._fan_out = fan_out
        self._seed = seed

    def __call__(self, var, block):
        """Add xavier initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in and fan_out are passed, use them
        fan_in = f_in if self._fan_in is None else self._fan_in
        fan_out = f_out if self._fan_out is None else self._fan_out

D
dzhwinter 已提交
505 506 507
        if self._seed == 0:
            self._seed = block.program.random_seed

508 509 510 511 512 513 514 515 516 517 518 519 520 521
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['xavier_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

522 523
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
524
            op = block._prepend_op(
525
                type="uniform_random",
526
                inputs={},
527
                outputs={"Out": out_var},
528
                attrs={
529 530
                    "shape": out_var.shape,
                    "dtype": out_dtype,
531 532 533
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
534 535
                },
                stop_gradient=True)
536 537 538

        else:
            std = np.sqrt(2.0 / float(fan_in + fan_out))
W
Wu Yi 已提交
539
            op = block._prepend_op(
540
                type="gaussian_random",
541
                outputs={"Out": out_var},
542
                attrs={
543 544
                    "shape": out_var.shape,
                    "dtype": out_dtype,
545 546 547
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
548 549
                },
                stop_gradient=True)
550 551 552 553 554 555 556 557 558

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
559
        if not framework.in_dygraph_mode():
560
            var.op = op
561
        return op
562 563 564 565 566 567


class MSRAInitializer(Initializer):
    """Implements the MSRA initializer a.k.a. Kaiming Initializer

    This class implements the weight initialization from the paper
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586
    `Delving Deep into Rectifiers: Surpassing Human-Level Performance on
    ImageNet Classification <https://arxiv.org/abs/1502.01852>`_
    by Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. This is a
    robust initialization method that particularly considers the rectifier
    nonlinearities. In case of Uniform distribution, the range is [-x, x], where

    .. math::

        x = \sqrt{\\frac{6.0}{fan\_in}}

    In case of Normal distribution, the mean is 0 and the standard deviation
    is

    .. math::

        \sqrt{\\frac{2.0}{fan\_in}}

    Args:
        uniform (bool): whether to use uniform or normal distribution
D
Double_V 已提交
587 588 589
        fan_in (float32|None): fan_in for MSRAInitializer. If None, it is\
        inferred from the variable. default is None.
        seed (int32): random seed
590 591 592 593 594 595

    Note:
        It is recommended to set fan_in to None for most cases.

    Examples:
        .. code-block:: python
X
xsrobin 已提交
596 597

            import paddle.fluid as fluid
D
Double_V 已提交
598
            x = fluid.data(name="data", shape=[8, 32, 32], dtype="float32")
X
xsrobin 已提交
599 600
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.MSRA(uniform=False))
601

602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631
    """

    def __init__(self, uniform=True, fan_in=None, seed=0):
        """Constructor for MSRAInitializer
        """
        assert uniform is not None
        assert seed is not None
        super(MSRAInitializer, self).__init__()
        self._uniform = uniform
        self._fan_in = fan_in
        self._seed = seed

    def __call__(self, var, block):
        """Add MSRA initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
        f_in, f_out = self._compute_fans(var)

        # If fan_in is passed, use it
        fan_in = f_in if self._fan_in is None else self._fan_in

D
dzhwinter 已提交
632 633 634
        if self._seed == 0:
            self._seed = block.program.random_seed

635 636 637 638 639 640 641 642 643 644 645 646 647 648
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['masra_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

649 650
        if self._uniform:
            limit = np.sqrt(6.0 / float(fan_in))
W
Wu Yi 已提交
651
            op = block._prepend_op(
652
                type="uniform_random",
653
                inputs={},
654
                outputs={"Out": out_var},
655
                attrs={
656 657
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
658 659 660
                    "min": -limit,
                    "max": limit,
                    "seed": self._seed
M
minqiyang 已提交
661 662
                },
                stop_gradient=True)
663 664 665

        else:
            std = np.sqrt(2.0 / float(fan_in))
W
Wu Yi 已提交
666
            op = block._prepend_op(
667
                type="gaussian_random",
668
                outputs={"Out": out_var},
669
                attrs={
670 671
                    "shape": out_var.shape,
                    "dtype": int(out_dtype),
672 673 674
                    "mean": 0.0,
                    "std": std,
                    "seed": self._seed
M
minqiyang 已提交
675 676
                },
                stop_gradient=True)
677 678 679 680 681 682 683 684 685

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
686
        if not framework.in_dygraph_mode():
687
            var.op = op
688
        return op
689 690


691
class BilinearInitializer(Initializer):
692
    """
693 694 695
    This initializer can be used in transposed convolution operator to
    act as upsampling. Users can upsample a feature map with shape of
    (B, C, H, W) by any integer factor. The usage is:
696 697 698 699 700

    Examples:

        .. code-block:: python

X
xsrobin 已提交
701
            import paddle.fluid as fluid
702
            import math
X
xsrobin 已提交
703 704
            factor = 2
            C = 2
D
Double_V 已提交
705 706
            B = 8
            H = W = 32
X
xsrobin 已提交
707 708 709
            w_attr = fluid.param_attr.ParamAttr(
                learning_rate=0., 
                regularizer=fluid.regularizer.L2Decay(0.),
710
                initializer=fluid.initializer.Bilinear())
D
Double_V 已提交
711
            x = fluid.data(name="data", shape=[B, 3, H, W], 
X
xsrobin 已提交
712 713 714 715 716 717 718 719 720 721 722
                                  dtype="float32")
            conv_up = fluid.layers.conv2d_transpose(
                input=x,
                num_filters=C,
                output_size=None,
                filter_size=2 * factor - factor % 2,
                padding=int(math.ceil((factor - 1) / 2.)),
                stride=factor,
                groups=C,
                param_attr=w_attr,
                bias_attr=False)
723 724

    Where, `num_filters=C` and `groups=C` means this is channel-wise transposed
725 726 727 728 729
    convolution. The filter shape will be (C, 1, K, K) where K is `filer_size`,
    This initializer will set a (K, K) interpolation kernel for every channel
    of the filter identically. The resulting shape of the output feature map
    will be (B, C, factor * H, factor * W). Note that the learning rate and the
    weight decay are set to 0 in order to keep coefficient values of bilinear
730 731
    interpolation unchanged during training.

732 733 734 735 736 737 738 739
    """

    def __init__(self):
        """Constructor for BilinearInitializer.
        """
        super(BilinearInitializer, self).__init__()

    def __call__(self, var, block):
T
tianshuo78520a 已提交
740
        """Add bilinear initialization ops for a variable
741 742 743 744 745 746 747

        Args:
            var (Variable): Variable that needs to be initialized.
            block (Block): The block in which initialization ops should
                           be added.

        Returns:
748
            Operator: the initialization op
749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778

        Raises:
            ValueError: If type of `var` and `block` is not right.
                        If the shape of `var` size is not 4 and
                        var.shape[2] != var.shape[3].
        """
        if not isinstance(var, framework.Variable):
            raise ValueError("var must be framework.Variable.")

        if not isinstance(block, framework.Block):
            raise ValueError("block must be framework.Block.")

        shape = var.shape
        if len(shape) != 4:
            raise ValueError("the length of shape must be 4.")
        if shape[2] != shape[3]:
            raise ValueError("shape[2] must be equal to shape[3].")

        weight = np.zeros(np.prod(var.shape), dtype='float32')
        size = shape[3]
        # factor
        f = np.ceil(size / 2.)
        # center
        c = (2 * f - 1 - f % 2) / (2. * f)
        for i in range(np.prod(shape)):
            x = i % size
            y = (i / size) % size
            weight[i] = (1 - abs(x / f - c)) * (1 - abs(y / f - c))
        weight = np.reshape(weight, shape)

779 780 781 782 783 784 785 786 787 788 789 790 791 792 793
        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['bilinear_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_dtype = var.dtype
            out_var = var

        if out_dtype == VarDesc.VarType.FP32:
794 795 796 797 798 799 800 801
            value_name = "fp32_values"
            values = [float(v) for v in weight.flat]
        else:
            raise ValueError("Unsupported dtype %s", input.dtype)
        if np.prod(shape) > 1024 * 1024:
            raise ValueError("The size of input is too big. ")
        op = block.append_op(
            type='assign_value',
802
            outputs={'Out': [out_var]},
803
            attrs={
804
                'dtype': out_dtype,
805 806 807
                'shape': list(shape),
                value_name: values
            })
808 809 810 811 812 813 814 815 816

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
817
        if not framework.in_dygraph_mode():
818
            var.op = op
819 820 821
        return op


822 823
class NumpyArrayInitializer(Initializer):
    """Init an parameter with an numpy array
824
    This op initialize the variable by numpy array.
825 826 827 828

    Args:
        value (numpy): numpy array to initialize the variable

829 830 831
    Returns:
        A Tensor variable initialized by numpy.

832 833 834
    Examples:
        .. code-block:: python

835
            import paddle.fluid as fluid
836 837
            import numpy
            x = fluid.data(name="x", shape=[2, 1], dtype='float32')
838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
            fc = fluid.layers.fc(input=x, size=10,
                param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
    """

    def __init__(self, value):
        import numpy
        assert isinstance(value, numpy.ndarray)
        super(NumpyArrayInitializer, self).__init__()
        self._value = value

    def __call__(self, var, block):
        """Add constant initialization ops for a variable

        Args:
            var: Variable that needs to be initialized
            block: The block in which initialization ops
                   should be added

        Returns:
            the initialization op
        """
        assert isinstance(var, framework.Variable)
        assert isinstance(block, framework.Block)
861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877

        # to be compatible of fp16 initalizers
        if var.dtype == VarDesc.VarType.FP16:
            out_dtype = VarDesc.VarType.FP32
            np_value = self._value.astype("float32")
            out_var = block.create_var(
                name=unique_name.generate(".".join(
                    ['numpy_array_init', var.name, 'tmp'])),
                shape=var.shape,
                dtype=out_dtype,
                type=VarDesc.VarType.LOD_TENSOR,
                persistable=False)
        else:
            out_var = var
            out_dtype = var.dtype
            np_value = self._value

878
        # Initialization Ops should be prepended and not appended
879
        if out_dtype == VarDesc.VarType.FP32:
880
            value_name = "fp32_values"
881 882
            values = [float(v) for v in np_value.flat]
        elif out_dtype == VarDesc.VarType.INT32:
883
            value_name = "int32_values"
884
            values = [int(v) for v in np_value.flat]
885 886
        else:
            raise ValueError("Unsupported dtype %s", self._value.dtype)
X
Xin Pan 已提交
887
        if self._value.size > 1024 * 1024 * 1024:
888 889 890 891
            raise ValueError("The size of input is too big. Please consider "
                             "saving it to file and 'load_op' to load it")
        op = block._prepend_op(
            type='assign_value',
892
            outputs={'Out': out_var},
893
            attrs={
894
                'dtype': out_dtype,
895
                'shape': list(self._value.shape),
896 897 898
                value_name: values
            },
            stop_gradient=True)
899 900 901 902 903 904 905 906 907

        if var.dtype == VarDesc.VarType.FP16:
            block.append_op(
                type="cast",
                inputs={"X": out_var},
                outputs={"Out": var},
                attrs={"in_dtype": out_var.dtype,
                       "out_dtype": var.dtype})

L
lujun 已提交
908
        if not framework.in_dygraph_mode():
909
            var.op = op
910 911 912
        return op


913 914 915 916 917 918 919 920 921 922 923 924
# We short the class name, since users will use the initializer with the package
# name. The sample code:
#
# import paddle.fluid as fluid
#
# hidden = fluid.layers.fc(...,
#                          param_attr=ParamAttr(fluid.initializer.Xavier()))
#
# It is no need to add an `Initializer` as the class suffix
Constant = ConstantInitializer
Uniform = UniformInitializer
Normal = NormalInitializer
925
TruncatedNormal = TruncatedNormalInitializer
926 927
Xavier = XavierInitializer
MSRA = MSRAInitializer
928
Bilinear = BilinearInitializer