test_desc_clone.py 9.3 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16 17 18
import collections
import functools
import unittest

G
gongweibao 已提交
19 20 21 22 23 24 25 26 27 28 29 30
import paddle
import paddle.fluid as fluid
from paddle.fluid import core

SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
G
gongweibao 已提交
47 48 49 50

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
51 52 53 54
    param_shape = [functools.reduce(lambda a, b: a * b, input_shape[1:], 1)] + [
        SIZE
    ]
    scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5
G
gongweibao 已提交
55 56 57 58 59 60

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
61 62 63 64 65
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale
            )
        ),
    )
G
gongweibao 已提交
66 67 68 69 70 71 72 73 74 75 76
    return predict


def get_model(batch_size):
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = cnn_model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
77
    avg_cost = paddle.mean(x=cost)
G
gongweibao 已提交
78 79

    # Evaluator
80
    batch_size_tensor = paddle.tensor.create_tensor(dtype='int64')
81
    batch_acc = paddle.static.accuracy(
82 83
        input=predict, label=label, total=batch_size_tensor
    )
G
gongweibao 已提交
84 85 86

    inference_program = fluid.default_main_program().clone()
    # Optimization
87 88 89
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999
    )
G
gongweibao 已提交
90 91

    # Reader
92 93 94 95 96 97
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=batch_size
    )
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=batch_size
    )
G
gongweibao 已提交
98
    opt.minimize(avg_cost)
99 100 101 102 103 104 105 106
    return (
        inference_program,
        avg_cost,
        train_reader,
        test_reader,
        batch_acc,
        predict,
    )
G
gongweibao 已提交
107 108 109


def operator_equal(a, b):
110
    if a.__str__() != b.__str__():
G
gongweibao 已提交
111 112
        raise ValueError("In operator_equal not equal\n")

113
    for k, v in a.__dict__.items():
114 115 116
        if isinstance(v, fluid.framework.Program) or isinstance(
            v, fluid.framework.Block
        ):
G
gongweibao 已提交
117 118 119
            continue

        elif isinstance(v, core.OpDesc):
G
gongweibao 已提交
120
            continue
G
gongweibao 已提交
121 122

        elif isinstance(v, collections.OrderedDict):
123 124
            v0 = sorted(list(v.items()), key=lambda x: x[0])
            v1 = sorted(list(b.__dict__[k].items()), key=lambda x: x[0])
G
gongweibao 已提交
125 126 127 128

            if v0 != v1:
                raise ValueError("In operator_equal not equal:{0}\n".format(k))

129
        elif v != b.__dict__[k]:
G
gongweibao 已提交
130 131 132 133 134 135
            raise ValueError("In operator_equal not equal:{0}\n".format(k))

    return True


def block_equal(a, b):
136
    for k, v in a.__dict__.items():
137 138 139 140 141
        if (
            isinstance(v, core.ProgramDesc)
            or isinstance(v, fluid.framework.Program)
            or isinstance(v, core.BlockDesc)
        ):
G
gongweibao 已提交
142 143 144
            continue

        elif k == "ops":
145
            assert len(a.ops) == len(b.ops)
G
gongweibao 已提交
146 147 148 149 150
            for i in range(0, len(a.ops)):
                if not operator_equal(a.ops[i], b.ops[i]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))

        elif isinstance(v, collections.OrderedDict):
151
            for key, value in v.items():
M
minqiyang 已提交
152 153
                if str(value) != str(b.__dict__[k][key]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))
G
gongweibao 已提交
154

155
        elif v != b.__dict__[k]:
G
gongweibao 已提交
156 157 158 159 160 161
            raise ValueError("In block_equal not equal:{0}\n".format(k))

    return True


def program_equal(a, b):
162
    for k, v in a.__dict__.items():
G
gongweibao 已提交
163 164 165 166 167 168
        if isinstance(v, core.ProgramDesc):
            continue

        elif k == 'blocks':
            for i in range(0, len(a.blocks)):
                if not block_equal(a.blocks[i], b.blocks[i]):
169
                    raise ValueError(
170 171
                        "In operator_equal not equal:{0}\n".format(k)
                    )
G
gongweibao 已提交
172
                    return False
173
            assert len(a.blocks) == len(b.blocks)
174 175
        elif k == '_auto_checkpoint_name':
            continue
176
        elif v != b.__dict__[k]:
G
gongweibao 已提交
177 178 179 180 181
            raise ValueError("In program_equal not equal:{0}\n".format(k))

    return True


182 183 184 185 186 187 188 189 190 191 192
class TestCloneWithStopGradient(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True
            hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
193 194
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'),
            )
195
            avg_loss = paddle.mean(loss)
196 197 198
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
199 200
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
201
        self.assertEqual(
202 203
            test_program.block(0).var(hidden2.name).stop_gradient, False
        )
204 205 206 207 208 209 210 211


class TestCloneWithStopGradientInSubBlock(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
212
            true = paddle.ones(shape=[1], dtype="float32")
213 214 215
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

216
            cond = paddle.equal(true, true)
217 218 219 220 221 222 223 224 225 226 227 228 229 230

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)

            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
231 232
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'),
            )
233
            avg_loss = paddle.mean(loss)
234 235 236
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
237 238
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
239 240 241 242 243 244 245 246 247 248 249 250 251 252
        for var in test_program.block(1).vars.values():
            var2 = train_program.block(1).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)
        for var in test_program.block(2).vars.values():
            var2 = train_program.block(2).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)


class TestCloneWithRaise(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
253
            true = paddle.ones(shape=[1], dtype="float32")
254 255 256
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

257
            cond = paddle.equal(true, true)
258 259 260 261 262 263 264 265 266 267 268 269 270

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
271 272
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'),
            )
273
            avg_loss = paddle.mean(loss)
274 275
            test_program = train_program.clone(for_test=False)

276 277 278 279 280 281 282 283
        self.assertRaises(
            ValueError, train_program._copy_data_info_from, startup_program
        )
        self.assertRaises(
            TypeError,
            train_program._copy_data_info_from,
            startup_program.block(0),
        )
284 285


G
gongweibao 已提交
286 287
if __name__ == "__main__":
    unittest.main()