test_desc_clone.py 9.7 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
import unittest
M
minqiyang 已提交
19
import six
G
gongweibao 已提交
20 21 22 23 24 25 26 27 28 29
import collections

SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
30 31 32 33 34 35 36 37 38 39 40 41
    conv_pool_1 = fluid.nets.simple_img_conv_pool(input=data,
                                                  filter_size=5,
                                                  num_filters=20,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(input=conv_pool_1,
                                                  filter_size=5,
                                                  num_filters=50,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
G
gongweibao 已提交
42 43 44 45

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
M
minqiyang 已提交
46 47
    param_shape = [six.moves.reduce(lambda a, b: a * b, input_shape[1:], 1)
                   ] + [SIZE]
G
gongweibao 已提交
48 49 50 51 52 53 54
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
55 56
            initializer=fluid.initializer.NormalInitializer(loc=0.0,
                                                            scale=scale)))
G
gongweibao 已提交
57 58 59 60 61 62 63 64 65 66 67
    return predict


def get_model(batch_size):
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = cnn_model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
68
    avg_cost = paddle.mean(x=cost)
G
gongweibao 已提交
69 70 71

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
72 73 74
    batch_acc = fluid.layers.accuracy(input=predict,
                                      label=label,
                                      total=batch_size_tensor)
G
gongweibao 已提交
75 76 77

    inference_program = fluid.default_main_program().clone()
    # Optimization
78 79 80
    opt = fluid.optimizer.AdamOptimizer(learning_rate=0.001,
                                        beta1=0.9,
                                        beta2=0.999)
G
gongweibao 已提交
81 82

    # Reader
83 84 85 86
    train_reader = paddle.batch(paddle.dataset.mnist.train(),
                                batch_size=batch_size)
    test_reader = paddle.batch(paddle.dataset.mnist.test(),
                               batch_size=batch_size)
G
gongweibao 已提交
87 88 89 90 91
    opt.minimize(avg_cost)
    return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


def operator_equal(a, b):
92
    if a.__str__() != b.__str__():
G
gongweibao 已提交
93 94
        raise ValueError("In operator_equal not equal\n")

M
minqiyang 已提交
95
    for k, v in six.iteritems(a.__dict__):
G
gongweibao 已提交
96 97 98 99 100
        if isinstance(v, fluid.framework.Program) or \
                isinstance(v, fluid.framework.Block):
            continue

        elif isinstance(v, core.OpDesc):
G
gongweibao 已提交
101
            continue
G
gongweibao 已提交
102 103

        elif isinstance(v, collections.OrderedDict):
M
minqiyang 已提交
104 105
            v0 = sorted(list(six.iteritems(v)), key=lambda x: x[0])
            v1 = sorted(list(six.iteritems(b.__dict__[k])), key=lambda x: x[0])
G
gongweibao 已提交
106 107 108 109 110 111 112 113 114 115 116

            if v0 != v1:
                raise ValueError("In operator_equal not equal:{0}\n".format(k))

        elif (v != b.__dict__[k]):
            raise ValueError("In operator_equal not equal:{0}\n".format(k))

    return True


def block_equal(a, b):
M
minqiyang 已提交
117
    for k, v in six.iteritems(a.__dict__):
G
gongweibao 已提交
118 119 120 121 122
        if isinstance(v, core.ProgramDesc) or isinstance(
                v, fluid.framework.Program) or isinstance(v, core.BlockDesc):
            continue

        elif k == "ops":
M
minqiyang 已提交
123
            assert (len(a.ops) == len(b.ops))
G
gongweibao 已提交
124 125 126 127 128
            for i in range(0, len(a.ops)):
                if not operator_equal(a.ops[i], b.ops[i]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))

        elif isinstance(v, collections.OrderedDict):
M
minqiyang 已提交
129 130 131
            for key, value in six.iteritems(v):
                if str(value) != str(b.__dict__[k][key]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))
G
gongweibao 已提交
132 133 134 135 136 137 138 139

        elif (v != b.__dict__[k]):
            raise ValueError("In block_equal not equal:{0}\n".format(k))

    return True


def program_equal(a, b):
M
minqiyang 已提交
140
    for k, v in six.iteritems(a.__dict__):
G
gongweibao 已提交
141 142 143 144 145 146
        if isinstance(v, core.ProgramDesc):
            continue

        elif k == 'blocks':
            for i in range(0, len(a.blocks)):
                if not block_equal(a.blocks[i], b.blocks[i]):
147 148
                    raise ValueError(
                        "In operator_equal not equal:{0}\n".format(k))
G
gongweibao 已提交
149 150
                    return False
            assert (len(a.blocks) == len(b.blocks))
151 152
        elif k == '_auto_checkpoint_name':
            continue
G
gongweibao 已提交
153 154 155 156 157 158
        elif (v != b.__dict__[k]):
            raise ValueError("In program_equal not equal:{0}\n".format(k))

    return True


159
class TestCloneWithStopGradient(unittest.TestCase):
160

161 162 163 164 165 166 167 168 169 170
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True
            hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
171
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
172
            avg_loss = paddle.mean(loss)
173 174 175 176 177 178 179 180 181
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
            test_program.block(0).var(hidden1.name).stop_gradient, True)
        self.assertEqual(
            test_program.block(0).var(hidden2.name).stop_gradient, False)


class TestCloneWithStopGradientInSubBlock(unittest.TestCase):
182

183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

            cond = fluid.layers.equal(true, true)

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)

            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
207
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
208
            avg_loss = paddle.mean(loss)
209 210 211 212 213 214 215 216 217 218 219 220 221
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
            test_program.block(0).var(hidden1.name).stop_gradient, True)
        for var in test_program.block(1).vars.values():
            var2 = train_program.block(1).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)
        for var in test_program.block(2).vars.values():
            var2 = train_program.block(2).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)


class TestCloneWithRaise(unittest.TestCase):
222

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

            cond = fluid.layers.equal(true, true)

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
246
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
247
            avg_loss = paddle.mean(loss)
248 249 250 251 252 253 254 255
            test_program = train_program.clone(for_test=False)

        self.assertRaises(ValueError, train_program._copy_data_info_from,
                          startup_program)
        self.assertRaises(TypeError, train_program._copy_data_info_from,
                          startup_program.block(0))


G
gongweibao 已提交
256 257
if __name__ == "__main__":
    unittest.main()