test_desc_clone.py 9.3 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
import unittest
19
import functools
G
gongweibao 已提交
20 21 22 23 24 25 26 27 28 29
import collections

SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
G
gongweibao 已提交
46 47 48 49

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
50 51 52 53
    param_shape = [functools.reduce(lambda a, b: a * b, input_shape[1:], 1)] + [
        SIZE
    ]
    scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5
G
gongweibao 已提交
54 55 56 57 58 59

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
60 61 62 63 64
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale
            )
        ),
    )
G
gongweibao 已提交
65 66 67 68 69 70 71 72 73 74 75
    return predict


def get_model(batch_size):
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = cnn_model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
76
    avg_cost = paddle.mean(x=cost)
G
gongweibao 已提交
77 78 79

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
80 81 82
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor
    )
G
gongweibao 已提交
83 84 85

    inference_program = fluid.default_main_program().clone()
    # Optimization
86 87 88
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999
    )
G
gongweibao 已提交
89 90

    # Reader
91 92 93 94 95 96
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=batch_size
    )
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=batch_size
    )
G
gongweibao 已提交
97
    opt.minimize(avg_cost)
98 99 100 101 102 103 104 105
    return (
        inference_program,
        avg_cost,
        train_reader,
        test_reader,
        batch_acc,
        predict,
    )
G
gongweibao 已提交
106 107 108


def operator_equal(a, b):
109
    if a.__str__() != b.__str__():
G
gongweibao 已提交
110 111
        raise ValueError("In operator_equal not equal\n")

112
    for k, v in a.__dict__.items():
113 114 115
        if isinstance(v, fluid.framework.Program) or isinstance(
            v, fluid.framework.Block
        ):
G
gongweibao 已提交
116 117 118
            continue

        elif isinstance(v, core.OpDesc):
G
gongweibao 已提交
119
            continue
G
gongweibao 已提交
120 121

        elif isinstance(v, collections.OrderedDict):
122 123
            v0 = sorted(list(v.items()), key=lambda x: x[0])
            v1 = sorted(list(b.__dict__[k].items()), key=lambda x: x[0])
G
gongweibao 已提交
124 125 126 127

            if v0 != v1:
                raise ValueError("In operator_equal not equal:{0}\n".format(k))

128
        elif v != b.__dict__[k]:
G
gongweibao 已提交
129 130 131 132 133 134
            raise ValueError("In operator_equal not equal:{0}\n".format(k))

    return True


def block_equal(a, b):
135
    for k, v in a.__dict__.items():
136 137 138 139 140
        if (
            isinstance(v, core.ProgramDesc)
            or isinstance(v, fluid.framework.Program)
            or isinstance(v, core.BlockDesc)
        ):
G
gongweibao 已提交
141 142 143
            continue

        elif k == "ops":
144
            assert len(a.ops) == len(b.ops)
G
gongweibao 已提交
145 146 147 148 149
            for i in range(0, len(a.ops)):
                if not operator_equal(a.ops[i], b.ops[i]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))

        elif isinstance(v, collections.OrderedDict):
150
            for key, value in v.items():
M
minqiyang 已提交
151 152
                if str(value) != str(b.__dict__[k][key]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))
G
gongweibao 已提交
153

154
        elif v != b.__dict__[k]:
G
gongweibao 已提交
155 156 157 158 159 160
            raise ValueError("In block_equal not equal:{0}\n".format(k))

    return True


def program_equal(a, b):
161
    for k, v in a.__dict__.items():
G
gongweibao 已提交
162 163 164 165 166 167
        if isinstance(v, core.ProgramDesc):
            continue

        elif k == 'blocks':
            for i in range(0, len(a.blocks)):
                if not block_equal(a.blocks[i], b.blocks[i]):
168
                    raise ValueError(
169 170
                        "In operator_equal not equal:{0}\n".format(k)
                    )
G
gongweibao 已提交
171
                    return False
172
            assert len(a.blocks) == len(b.blocks)
173 174
        elif k == '_auto_checkpoint_name':
            continue
175
        elif v != b.__dict__[k]:
G
gongweibao 已提交
176 177 178 179 180
            raise ValueError("In program_equal not equal:{0}\n".format(k))

    return True


181 182 183 184 185 186 187 188 189 190 191
class TestCloneWithStopGradient(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True
            hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
192 193
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'),
            )
194
            avg_loss = paddle.mean(loss)
195 196 197
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
198 199
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
200
        self.assertEqual(
201 202
            test_program.block(0).var(hidden2.name).stop_gradient, False
        )
203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229


class TestCloneWithStopGradientInSubBlock(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

            cond = fluid.layers.equal(true, true)

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)

            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
230 231
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'),
            )
232
            avg_loss = paddle.mean(loss)
233 234 235
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
236 237
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
        for var in test_program.block(1).vars.values():
            var2 = train_program.block(1).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)
        for var in test_program.block(2).vars.values():
            var2 = train_program.block(2).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)


class TestCloneWithRaise(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

            cond = fluid.layers.equal(true, true)

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
270 271
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'),
            )
272
            avg_loss = paddle.mean(loss)
273 274
            test_program = train_program.clone(for_test=False)

275 276 277 278 279 280 281 282
        self.assertRaises(
            ValueError, train_program._copy_data_info_from, startup_program
        )
        self.assertRaises(
            TypeError,
            train_program._copy_data_info_from,
            startup_program.block(0),
        )
283 284


G
gongweibao 已提交
285 286
if __name__ == "__main__":
    unittest.main()