test_desc_clone.py 9.3 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
import paddle.fluid as fluid
from paddle.fluid import core
import unittest
19
import functools
G
gongweibao 已提交
20 21 22 23 24 25 26 27 28 29
import collections

SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
    conv_pool_1 = fluid.nets.simple_img_conv_pool(
        input=data,
        filter_size=5,
        num_filters=20,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
    conv_pool_2 = fluid.nets.simple_img_conv_pool(
        input=conv_pool_1,
        filter_size=5,
        num_filters=50,
        pool_size=2,
        pool_stride=2,
        act="relu",
    )
G
gongweibao 已提交
46 47 48 49

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
50 51 52 53
    param_shape = [functools.reduce(lambda a, b: a * b, input_shape[1:], 1)] + [
        SIZE
    ]
    scale = (2.0 / (param_shape[0] ** 2 * SIZE)) ** 0.5
G
gongweibao 已提交
54 55 56 57 58 59

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
60 61 62 63 64
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=scale
            )
        ),
    )
G
gongweibao 已提交
65 66 67 68 69 70 71 72 73 74 75
    return predict


def get_model(batch_size):
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = cnn_model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
76
    avg_cost = paddle.mean(x=cost)
G
gongweibao 已提交
77 78 79

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
80 81 82
    batch_acc = fluid.layers.accuracy(
        input=predict, label=label, total=batch_size_tensor
    )
G
gongweibao 已提交
83 84 85

    inference_program = fluid.default_main_program().clone()
    # Optimization
86 87 88
    opt = fluid.optimizer.AdamOptimizer(
        learning_rate=0.001, beta1=0.9, beta2=0.999
    )
G
gongweibao 已提交
89 90

    # Reader
91 92 93 94 95 96
    train_reader = paddle.batch(
        paddle.dataset.mnist.train(), batch_size=batch_size
    )
    test_reader = paddle.batch(
        paddle.dataset.mnist.test(), batch_size=batch_size
    )
G
gongweibao 已提交
97
    opt.minimize(avg_cost)
98 99 100 101 102 103 104 105
    return (
        inference_program,
        avg_cost,
        train_reader,
        test_reader,
        batch_acc,
        predict,
    )
G
gongweibao 已提交
106 107 108


def operator_equal(a, b):
109
    if a.__str__() != b.__str__():
G
gongweibao 已提交
110 111
        raise ValueError("In operator_equal not equal\n")

112
    for k, v in a.__dict__.items():
113 114 115
        if isinstance(v, fluid.framework.Program) or isinstance(
            v, fluid.framework.Block
        ):
G
gongweibao 已提交
116 117 118
            continue

        elif isinstance(v, core.OpDesc):
G
gongweibao 已提交
119
            continue
G
gongweibao 已提交
120 121

        elif isinstance(v, collections.OrderedDict):
122 123
            v0 = sorted(list(v.items()), key=lambda x: x[0])
            v1 = sorted(list(b.__dict__[k].items()), key=lambda x: x[0])
G
gongweibao 已提交
124 125 126 127

            if v0 != v1:
                raise ValueError("In operator_equal not equal:{0}\n".format(k))

128
        elif v != b.__dict__[k]:
G
gongweibao 已提交
129 130 131 132 133 134
            raise ValueError("In operator_equal not equal:{0}\n".format(k))

    return True


def block_equal(a, b):
135
    for k, v in a.__dict__.items():
136 137 138 139 140
        if (
            isinstance(v, core.ProgramDesc)
            or isinstance(v, fluid.framework.Program)
            or isinstance(v, core.BlockDesc)
        ):
G
gongweibao 已提交
141 142 143
            continue

        elif k == "ops":
144
            assert len(a.ops) == len(b.ops)
G
gongweibao 已提交
145 146 147 148 149
            for i in range(0, len(a.ops)):
                if not operator_equal(a.ops[i], b.ops[i]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))

        elif isinstance(v, collections.OrderedDict):
150
            for key, value in v.items():
M
minqiyang 已提交
151 152
                if str(value) != str(b.__dict__[k][key]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))
G
gongweibao 已提交
153

154
        elif v != b.__dict__[k]:
G
gongweibao 已提交
155 156 157 158 159 160
            raise ValueError("In block_equal not equal:{0}\n".format(k))

    return True


def program_equal(a, b):
161
    for k, v in a.__dict__.items():
G
gongweibao 已提交
162 163 164 165 166 167
        if isinstance(v, core.ProgramDesc):
            continue

        elif k == 'blocks':
            for i in range(0, len(a.blocks)):
                if not block_equal(a.blocks[i], b.blocks[i]):
168
                    raise ValueError(
169 170
                        "In operator_equal not equal:{0}\n".format(k)
                    )
G
gongweibao 已提交
171
                    return False
172
            assert len(a.blocks) == len(b.blocks)
173 174
        elif k == '_auto_checkpoint_name':
            continue
175
        elif v != b.__dict__[k]:
G
gongweibao 已提交
176 177 178 179 180
            raise ValueError("In program_equal not equal:{0}\n".format(k))

    return True


181 182 183 184 185 186 187 188 189 190 191
class TestCloneWithStopGradient(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True
            hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
192 193
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'),
            )
194
            avg_loss = paddle.mean(loss)
195 196 197
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
198 199
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
200
        self.assertEqual(
201 202
            test_program.block(0).var(hidden2.name).stop_gradient, False
        )
203 204 205 206 207 208 209 210 211 212 213 214


class TestCloneWithStopGradientInSubBlock(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

215
            cond = paddle.equal(true, true)
216 217 218 219 220 221 222 223 224 225 226 227 228 229

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)

            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
230 231
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'),
            )
232
            avg_loss = paddle.mean(loss)
233 234 235
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
236 237
            test_program.block(0).var(hidden1.name).stop_gradient, True
        )
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
        for var in test_program.block(1).vars.values():
            var2 = train_program.block(1).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)
        for var in test_program.block(2).vars.values():
            var2 = train_program.block(2).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)


class TestCloneWithRaise(unittest.TestCase):
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

256
            cond = paddle.equal(true, true)
257 258 259 260 261 262 263 264 265 266 267 268 269

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
270 271
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'),
            )
272
            avg_loss = paddle.mean(loss)
273 274
            test_program = train_program.clone(for_test=False)

275 276 277 278 279 280 281 282
        self.assertRaises(
            ValueError, train_program._copy_data_info_from, startup_program
        )
        self.assertRaises(
            TypeError,
            train_program._copy_data_info_from,
            startup_program.block(0),
        )
283 284


G
gongweibao 已提交
285 286
if __name__ == "__main__":
    unittest.main()