test_desc_clone.py 10.0 KB
Newer Older
G
gongweibao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15 16
from __future__ import print_function

G
gongweibao 已提交
17 18 19 20
import numpy as np
import argparse
import time
import math
21
import sys
G
gongweibao 已提交
22 23 24 25 26 27 28 29 30

import paddle
import paddle.fluid as fluid
import paddle.fluid.profiler as profiler
from paddle.fluid import core
import unittest
from multiprocessing import Process
import os
import signal
M
minqiyang 已提交
31
import six
G
gongweibao 已提交
32 33 34 35 36 37 38 39 40 41
import collections

SEED = 1
DTYPE = "float32"
paddle.dataset.mnist.fetch()


# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def cnn_model(data):
42 43 44 45 46 47 48 49 50 51 52 53
    conv_pool_1 = fluid.nets.simple_img_conv_pool(input=data,
                                                  filter_size=5,
                                                  num_filters=20,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
    conv_pool_2 = fluid.nets.simple_img_conv_pool(input=conv_pool_1,
                                                  filter_size=5,
                                                  num_filters=50,
                                                  pool_size=2,
                                                  pool_stride=2,
                                                  act="relu")
G
gongweibao 已提交
54 55 56 57

    # TODO(dzhwinter) : refine the initializer and random seed settting
    SIZE = 10
    input_shape = conv_pool_2.shape
M
minqiyang 已提交
58 59
    param_shape = [six.moves.reduce(lambda a, b: a * b, input_shape[1:], 1)
                   ] + [SIZE]
G
gongweibao 已提交
60 61 62 63 64 65 66
    scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5

    predict = fluid.layers.fc(
        input=conv_pool_2,
        size=SIZE,
        act="softmax",
        param_attr=fluid.param_attr.ParamAttr(
67 68
            initializer=fluid.initializer.NormalInitializer(loc=0.0,
                                                            scale=scale)))
G
gongweibao 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    return predict


def get_model(batch_size):
    # Input data
    images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE)
    label = fluid.layers.data(name='label', shape=[1], dtype='int64')

    # Train program
    predict = cnn_model(images)
    cost = fluid.layers.cross_entropy(input=predict, label=label)
    avg_cost = fluid.layers.mean(x=cost)

    # Evaluator
    batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
84 85 86
    batch_acc = fluid.layers.accuracy(input=predict,
                                      label=label,
                                      total=batch_size_tensor)
G
gongweibao 已提交
87 88 89

    inference_program = fluid.default_main_program().clone()
    # Optimization
90 91 92
    opt = fluid.optimizer.AdamOptimizer(learning_rate=0.001,
                                        beta1=0.9,
                                        beta2=0.999)
G
gongweibao 已提交
93 94

    # Reader
95 96 97 98
    train_reader = paddle.batch(paddle.dataset.mnist.train(),
                                batch_size=batch_size)
    test_reader = paddle.batch(paddle.dataset.mnist.test(),
                               batch_size=batch_size)
G
gongweibao 已提交
99 100 101 102 103
    opt.minimize(avg_cost)
    return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict


def operator_equal(a, b):
104
    if a.__str__() != b.__str__():
G
gongweibao 已提交
105 106
        raise ValueError("In operator_equal not equal\n")

M
minqiyang 已提交
107
    for k, v in six.iteritems(a.__dict__):
G
gongweibao 已提交
108 109 110 111 112
        if isinstance(v, fluid.framework.Program) or \
                isinstance(v, fluid.framework.Block):
            continue

        elif isinstance(v, core.OpDesc):
G
gongweibao 已提交
113
            continue
G
gongweibao 已提交
114 115

        elif isinstance(v, collections.OrderedDict):
M
minqiyang 已提交
116 117
            v0 = sorted(list(six.iteritems(v)), key=lambda x: x[0])
            v1 = sorted(list(six.iteritems(b.__dict__[k])), key=lambda x: x[0])
G
gongweibao 已提交
118 119 120 121 122 123 124 125 126 127 128

            if v0 != v1:
                raise ValueError("In operator_equal not equal:{0}\n".format(k))

        elif (v != b.__dict__[k]):
            raise ValueError("In operator_equal not equal:{0}\n".format(k))

    return True


def block_equal(a, b):
M
minqiyang 已提交
129
    for k, v in six.iteritems(a.__dict__):
G
gongweibao 已提交
130 131 132 133 134
        if isinstance(v, core.ProgramDesc) or isinstance(
                v, fluid.framework.Program) or isinstance(v, core.BlockDesc):
            continue

        elif k == "ops":
M
minqiyang 已提交
135
            assert (len(a.ops) == len(b.ops))
G
gongweibao 已提交
136 137 138 139 140
            for i in range(0, len(a.ops)):
                if not operator_equal(a.ops[i], b.ops[i]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))

        elif isinstance(v, collections.OrderedDict):
M
minqiyang 已提交
141 142 143
            for key, value in six.iteritems(v):
                if str(value) != str(b.__dict__[k][key]):
                    raise ValueError("In block_equal not equal:{0}\n".format(k))
G
gongweibao 已提交
144 145 146 147 148 149 150 151

        elif (v != b.__dict__[k]):
            raise ValueError("In block_equal not equal:{0}\n".format(k))

    return True


def program_equal(a, b):
M
minqiyang 已提交
152
    for k, v in six.iteritems(a.__dict__):
G
gongweibao 已提交
153 154 155 156 157 158
        if isinstance(v, core.ProgramDesc):
            continue

        elif k == 'blocks':
            for i in range(0, len(a.blocks)):
                if not block_equal(a.blocks[i], b.blocks[i]):
159 160
                    raise ValueError(
                        "In operator_equal not equal:{0}\n".format(k))
G
gongweibao 已提交
161 162
                    return False
            assert (len(a.blocks) == len(b.blocks))
163 164
        elif k == '_auto_checkpoint_name':
            continue
G
gongweibao 已提交
165 166 167 168 169 170
        elif (v != b.__dict__[k]):
            raise ValueError("In program_equal not equal:{0}\n".format(k))

    return True


171
class TestCloneWithStopGradient(unittest.TestCase):
172

173 174 175 176 177 178 179 180 181 182
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True
            hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
183
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
184 185 186 187 188 189 190 191 192 193
            avg_loss = fluid.layers.mean(loss)
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
            test_program.block(0).var(hidden1.name).stop_gradient, True)
        self.assertEqual(
            test_program.block(0).var(hidden2.name).stop_gradient, False)


class TestCloneWithStopGradientInSubBlock(unittest.TestCase):
194

195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

            cond = fluid.layers.equal(true, true)

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)

            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
219
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
220 221 222 223 224 225 226 227 228 229 230 231 232 233
            avg_loss = fluid.layers.mean(loss)
            test_program = train_program.clone(for_test=False)

        self.assertEqual(
            test_program.block(0).var(hidden1.name).stop_gradient, True)
        for var in test_program.block(1).vars.values():
            var2 = train_program.block(1).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)
        for var in test_program.block(2).vars.values():
            var2 = train_program.block(2).var(var.name)
            self.assertEqual(var.stop_gradient, var2.stop_gradient)


class TestCloneWithRaise(unittest.TestCase):
234

235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
    def test_clone_with_stop_gradient(self):
        train_program = fluid.Program()
        startup_program = fluid.Program()
        with fluid.program_guard(train_program, startup_program):
            img = fluid.layers.data(name='image', shape=[784])
            true = fluid.layers.ones(shape=[1], dtype="float32")
            hidden1 = fluid.layers.fc(input=img, size=200, act='relu')
            hidden1.stop_gradient = True

            cond = fluid.layers.equal(true, true)

            def true_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.5)
                hidden2.stop_gradient = True
                return hidden2

            def false_fn():
                hidden2 = fluid.layers.dropout(hidden1, dropout_prob=0.6)
                return hidden2

            hidden2 = fluid.layers.cond(cond, true_fn, false_fn)
            loss = fluid.layers.cross_entropy(
                input=fluid.layers.fc(hidden2, size=10, act='softmax'),
258
                label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
259 260 261 262 263 264 265 266 267
            avg_loss = fluid.layers.mean(loss)
            test_program = train_program.clone(for_test=False)

        self.assertRaises(ValueError, train_program._copy_data_info_from,
                          startup_program)
        self.assertRaises(TypeError, train_program._copy_data_info_from,
                          startup_program.block(0))


G
gongweibao 已提交
268 269
if __name__ == "__main__":
    unittest.main()