operator.h 17.4 KB
Newer Older
1
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Q
Qiao Longfei 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

D
dongzhihong 已提交
17
#include <algorithm>
18
#include <atomic>
L
luotao1 已提交
19
#include <memory>
20
#include <mutex>  // NOLINT
Q
Qiao Longfei 已提交
21
#include <string>
D
dzhwinter 已提交
22
#include <tuple>
Q
Qiao Longfei 已提交
23
#include <unordered_map>
L
luotao1 已提交
24
#include <utility>
Q
Qiao Longfei 已提交
25 26
#include <vector>

Y
Yu Yang 已提交
27
#include "glog/logging.h"  // For VLOG
Y
Yi Wang 已提交
28 29 30 31 32 33 34 35 36
#include "paddle/fluid/framework/attribute.h"
#include "paddle/fluid/framework/block_desc.h"
#include "paddle/fluid/framework/framework.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/op_kernel_type.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/framework/tensor.h"
37
#include "paddle/fluid/framework/unused_var_check.h"
38
#include "paddle/fluid/memory/malloc.h"
Y
Yi Wang 已提交
39 40
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/variant.h"
Q
Qiao Longfei 已提交
41

Q
Qiao Longfei 已提交
42 43
DECLARE_int32(inner_op_parallelism);

Q
Qiao Longfei 已提交
44 45 46
namespace paddle {
namespace framework {

47
/// If a variable is a empty variable, that name will be used.
48
constexpr char kEmptyVarName[] = "@EMPTY@";
49 50 51

/// If a variable is a temporary variable, that name will be set in Python,
/// but it will be convert to a unique name in scope after OpCreator.
52
constexpr char kTempVarName[] = "@TEMP@";
53 54

/// If a variable's name has a certain suffix, it means that the
T
tianshuo78520a 已提交
55 56
/// variable is the gradient of another variable.
/// e.g. Variable "x@GRAD" is the gradient of variable "x".
57
constexpr char kGradVarSuffix[] = "@GRAD";
58

M
minqiyang 已提交
59 60
constexpr size_t kGradVarSuffixSize = 5U;

61
/// Variables with this suffix are supposed to be filled up with zeros.
62
constexpr char kZeroVarSuffix[] = "@ZERO";
63

C
chengduo 已提交
64 65 66
/// Variables with this suffix are the new Gradient.
constexpr char kNewGradSuffix[] = "@NEWGRAD@";

L
luotao1 已提交
67 68 69 70 71 72 73 74
/// RuntimeContext is used to relate input/output names of Operator with
/// the corresponding variables in name scope.
/// If an Op has attribute kEnableCacheRuntimeContext, it means that in a same
/// name scope, since the input/output names of this Op do not change in the
/// execution, RuntimeContext could be created only at the first iteration of
/// this Op's execution to save the elapsed time.
constexpr char kEnableCacheRuntimeContext[] = "@ENABLE_CACHE_RUNTIME_CONTEXT@";

L
luotao1 已提交
75 76 77 78 79 80 81 82 83
/// If an Op has this attribute, all its kernels should calculate output
/// variable's shape in the corresponding Compute() function. And
/// OperatorWithKernel::RunImpl() would skip call this Op's InferShape()
/// function in its runtime for speedup.
/// TODO(luotao): Note that this temporal attribute would be deleted after all
/// ops contain it.
constexpr char kAllKernelsMustComputeRuntimeShape[] =
    "@ALL_KERNELS_MUST_COMPUTE_RUNTIME_SHAPE@";

D
dzhwinter 已提交
84
// define some kernel priority
85
/* Define multiple kernel type fallback order*/
D
dzhwinter 已提交
86 87
extern std::vector<std::tuple<platform::Place, LibraryType>> kKernelPriority;

88
inline std::string GradVarName(const std::string& var_name) {
M
minqiyang 已提交
89 90 91 92 93
  std::string result;
  result.reserve(var_name.size() + kGradVarSuffixSize);
  result += var_name;
  result += kGradVarSuffix;
  return result;
94 95
}

M
minqiyang 已提交
96
inline std::string GradOriginalVarName(const std::string& grad_var_name) {
M
minqiyang 已提交
97
  std::size_t pos = grad_var_name.rfind(kGradVarSuffix);
98 99 100 101 102
  if (pos == std::string::npos) {
    return grad_var_name;
  } else {
    return grad_var_name.substr(0, pos);
  }
103 104
}

C
chengduo 已提交
105 106
const Tensor* GetLoDTensorOrSelectedRowsValueFromVar(const Variable& var);
Tensor* GetMutableLoDTensorOrSelectedRowsValueFromVar(Variable* var);
Q
qiaolongfei 已提交
107

Q
Qiao Longfei 已提交
108
class OperatorBase;
109
class ExecutionContext;
110

X
Xin Pan 已提交
111 112
class RuntimeContext {
 public:
X
Xin Pan 已提交
113 114
  RuntimeContext(const VariableNameMap& innames,
                 const VariableNameMap& outnames, const Scope& scope);
X
Xin Pan 已提交
115

X
Xin Pan 已提交
116 117 118 119
  RuntimeContext(const VariableValueMap& invars,
                 const VariableValueMap& outvars)
      : inputs(invars), outputs(outvars) {}

X
Xin Pan 已提交
120 121 122 123
  VariableValueMap inputs;
  VariableValueMap outputs;
};

Q
Qiao Longfei 已提交
124
/**
X
Xin Pan 已提交
125
 * OperatorBase has the basic elements that Net will call to do computation.
Q
Qiao Longfei 已提交
126 127 128 129 130 131
 * Only CreateOperator from OpRegistry will new Operator directly. User
 * should always construct a proto message OpDesc and call
 * OpRegistry::CreateOp(op_desc) to get an Operator instance.
 */
class OperatorBase {
 public:
Y
Yu Yang 已提交
132 133
  OperatorBase(const std::string& type, const VariableNameMap& inputs,
               const VariableNameMap& outputs, const AttributeMap& attrs);
134

Q
Qiao Longfei 已提交
135 136
  virtual ~OperatorBase() {}

137
  /// Executor will call this interface function to Run an op.
138 139
  //  The implementation should be written at RunImpl
  void Run(const Scope& scope, const platform::Place& place);
Y
Yu Yang 已提交
140

T
typhoonzero 已提交
141 142 143
  // FIXME(typhoonzero): this is only used for recv_op to stop event_loop.
  virtual void Stop() {}

144 145 146
  /// if scope is not null, also show dimensions of arguments
  virtual std::string DebugStringEx(const Scope* scope) const;
  std::string DebugString() const { return DebugStringEx(nullptr); }
Y
Yu Yang 已提交
147

148 149
  virtual bool SupportGPU() const { return false; }

150 151
  const std::string& Type() const { return type_; }

M
Michal Gallus 已提交
152
  bool HasAttr(const std::string& name) const { return attrs_.count(name); }
153 154
  template <typename T>
  inline const T& Attr(const std::string& name) const {
M
minqiyang 已提交
155 156
    PADDLE_ENFORCE(attrs_.find(name) != attrs_.end(),
                   "%s should be in AttributeMap", name);
157 158 159
    return boost::get<T>(attrs_.at(name));
  }
  const AttributeMap& Attrs() const { return attrs_; }
D
dongzhihong 已提交
160

Y
Yu Yang 已提交
161 162
  const VariableNameMap& Inputs() const { return inputs_; }
  const VariableNameMap& Outputs() const { return outputs_; }
163

S
sneaxiy 已提交
164 165 166 167 168
  const OpInfo& Info() const {
    PADDLE_ENFORCE_NOT_NULL(info_, "OpInfo of %s is not found", type_);
    return *info_;
  }

169
  bool HasInputs(const std::string& name) const;
Y
Yu Yang 已提交
170
  //! Get a input with argument's name described in `op_proto`
171
  std::string Input(const std::string& name) const;
Y
Yu Yang 已提交
172
  //! Get a input which has multiple variables.
Y
Yu Yang 已提交
173
  const std::vector<std::string>& Inputs(const std::string& name) const;
174
  //! Get all inputs variable names
Q
qijun 已提交
175 176
  std::vector<std::string> InputVars() const;

177
  bool HasOutputs(const std::string& name) const;
Y
Yu Yang 已提交
178
  //! Get a output with argument's name described in `op_proto`
179
  std::string Output(const std::string& name) const;
Y
Yu Yang 已提交
180 181
  //! Get an output which has multiple variables.
  //! TODO add a vector_view to prevent memory copy.
Y
Yu Yang 已提交
182
  const std::vector<std::string>& Outputs(const std::string& name) const;
183
  //! Get all outputs variable names
Y
Yu Yang 已提交
184
  virtual std::vector<std::string> OutputVars(bool has_intermediate) const;
185

186
  void SetIsCalledByExecutor(bool x) { run_by_executor_ = x; }
187

B
baojun-nervana 已提交
188
  virtual void RuntimeInferShape(const Scope& scope,
X
Xin Pan 已提交
189 190
                                 const platform::Place& place,
                                 const RuntimeContext& ctx) const {}
191

Q
qiaolongfei 已提交
192
 protected:
Q
Qiao Longfei 已提交
193
  std::string type_;
D
dongzhihong 已提交
194
  // NOTE: in case of OpGrad, inputs_ contains:
195
  // I (Inputs)
D
dongzhihong 已提交
196 197
  // O (Outputs)
  // OG (Output Gradients)
Y
Yu Yang 已提交
198
  VariableNameMap inputs_;
Y
Yu Yang 已提交
199

D
dongzhihong 已提交
200 201
  // NOTE: in case of OpGrad, outputs_ contains
  // IG (Inputs Gradients)
Y
Yu Yang 已提交
202
  VariableNameMap outputs_;
Q
Qiao Longfei 已提交
203
  AttributeMap attrs_;
S
sneaxiy 已提交
204 205 206 207

  // OpInfo
  const OpInfo* info_;

208 209
  // Whether this operator executes in an Executor.
  bool run_by_executor_{true};
210 211 212 213

 private:
  void GenerateTemporaryNames();
  void CheckAllInputOutputSet() const;
214 215
  virtual void RunImpl(const Scope& scope,
                       const platform::Place& place) const = 0;
Y
Yan Chunwei 已提交
216 217
};

218
class ExecutionContext {
Y
Yan Chunwei 已提交
219
 public:
220
  ExecutionContext(const OperatorBase& op, const Scope& scope,
X
Xin Pan 已提交
221
                   const platform::DeviceContext& device_context,
222 223
                   const RuntimeContext& ctx)
      : op_(op), scope_(scope), device_context_(device_context), ctx_(ctx) {}
H
hong 已提交
224
  virtual ~ExecutionContext() {}
225

H
hong 已提交
226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
  virtual std::string InputName(const std::string& name) const {
    return op_.Input(name);
  }
  virtual std::vector<std::string> InputNames(const std::string& name) const {
    return op_.Inputs(name);
  }
  virtual std::string OutputName(const std::string& name) const {
    return op_.Output(name);
  }

  virtual std::vector<std::string> OutputNames(const std::string& name) const {
    return op_.Outputs(name);
  }

  virtual bool HasAttr(const std::string& name) const {
    return op_.HasAttr(name);
  }
  virtual const AttributeMap& Attrs() const { return op_.Attrs(); }

  const std::string& Type() const { return op_.Type(); }
Q
qiaolongfei 已提交
246 247 248

  const Scope& scope() const { return scope_; }

Q
qiaolongfei 已提交
249
  template <typename T>
Y
Yu Yang 已提交
250
  inline const T& Attr(const std::string& name) const {
H
hong 已提交
251
    return boost::get<T>(GetAttr(name));
Q
qiaolongfei 已提交
252 253
  }

H
hong 已提交
254 255 256
  virtual const Attribute& GetAttr(const std::string& name) const {
    return op_.Attrs().at(name);
  }
257

H
hong 已提交
258
  virtual bool HasInput(const std::string& name) const;
259

H
hong 已提交
260
  virtual bool HasOutput(const std::string& name) const;
261

H
hong 已提交
262
  virtual size_t InputSize(const std::string& name) const {
Y
Yu Yang 已提交
263
    return op_.Inputs(name).size();
Y
Yan Chunwei 已提交
264 265
  }

H
hong 已提交
266
  virtual size_t OutputSize(const std::string& name) const {
Y
Yu Yang 已提交
267
    return op_.Outputs(name).size();
Y
Yan Chunwei 已提交
268 269
  }

H
hong 已提交
270
  virtual const Variable* InputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
271

H
hong 已提交
272
  virtual Variable* OutputVar(const std::string& name) const;
Y
Yan Chunwei 已提交
273

H
hong 已提交
274
  virtual const std::vector<Variable*> MultiInputVar(
275
      const std::string& name) const {
276 277
    LogVarUsageIfUnusedVarCheckEnabled(name);

X
Xin Pan 已提交
278 279 280 281
    auto it = ctx_.inputs.find(name);
    if (it == ctx_.inputs.end()) {
      return {};
    }
G
Gabor Buella 已提交
282
    return {it->second.begin(), it->second.end()};
X
Xin Pan 已提交
283 284
  }

H
hong 已提交
285
  virtual std::vector<Variable*> MultiOutputVar(const std::string& name) const {
X
Xin Pan 已提交
286 287 288 289 290 291 292
    auto it = ctx_.outputs.find(name);
    if (it == ctx_.outputs.end()) {
      return {};
    }
    return it->second;
  }

H
hong 已提交
293 294 295 296 297 298 299 300 301 302 303
  virtual std::vector<std::string> InNameList() const {
    std::vector<std::string> vec_temp;
    vec_temp.reserve(ctx_.inputs.size());

    for (auto& input : ctx_.inputs) {
      vec_temp.push_back(input.first);
    }

    return vec_temp;
  }

304 305
  template <typename T>
  const T* Input(const std::string& name) const {
Y
Yu Yang 已提交
306
    auto* var = InputVar(name);
307
    return var == nullptr ? nullptr : &var->Get<T>();
308 309 310 311
  }

  template <typename T>
  T* Output(const std::string& name) const {
312
    auto var = OutputVar(name);
313
    return var == nullptr ? nullptr : var->GetMutable<T>();
314 315 316 317
  }

  template <typename T>
  const std::vector<const T*> MultiInput(const std::string& name) const {
318 319
    LogVarUsageIfUnusedVarCheckEnabled(name);

H
hong 已提交
320 321
    auto vars = MultiInputVar(name);
    if (vars.size() == 0) {
X
Xin Pan 已提交
322 323 324 325 326
      return {};
    }
    std::vector<const T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
H
hong 已提交
327
                   [&](const Variable* var) -> const T* {
X
Xin Pan 已提交
328 329 330 331 332 333 334
                     return var == nullptr ? nullptr : &var->Get<T>();
                   });
    return res;
  }

  template <typename T>
  std::vector<T*> MultiOutput(const std::string& name) const {
H
hong 已提交
335 336 337
    auto vars = MultiOutputVar(name);

    if (vars.size() == 0) {
X
Xin Pan 已提交
338 339
      return {};
    }
H
hong 已提交
340

X
Xin Pan 已提交
341 342 343 344 345 346
    std::vector<T*> res;
    res.reserve(vars.size());
    std::transform(vars.begin(), vars.end(), std::back_inserter(res),
                   [&](Variable* var) -> T* {
                     return var == nullptr ? nullptr : var->GetMutable<T>();
                   });
H
hong 已提交
347

X
Xin Pan 已提交
348 349 350
    return res;
  }

351
  platform::Place GetPlace() const { return device_context_.GetPlace(); }
Q
qijun 已提交
352

Q
QI JUN 已提交
353 354 355 356 357
  template <typename DeviceContextType>
  const DeviceContextType& device_context() const {
    return *reinterpret_cast<const DeviceContextType*>(&device_context_);
  }

358
  const platform::DeviceContext& device_context() const {
Q
qijun 已提交
359
    return device_context_;
Q
qijun 已提交
360
  }
Q
qijun 已提交
361

Q
QI JUN 已提交
362 363
#ifdef PADDLE_WITH_CUDA
  const inline platform::CUDADeviceContext& cuda_device_context() const {
364
    PADDLE_ENFORCE_EQ(platform::is_gpu_place(device_context_.GetPlace()), true);
Q
QI JUN 已提交
365 366 367 368 369
    return *reinterpret_cast<const platform::CUDADeviceContext*>(
        &device_context_);
  }
#endif

X
Xin Pan 已提交
370 371 372
  template <typename T, typename DevContext>
  Tensor AllocateTmpTensor(const framework::DDim& dim,
                           const DevContext& dev_ctx) const {
373
    auto tmp_allocation_ptr = memory::Alloc(dev_ctx, product(dim) * sizeof(T));
X
Xin Pan 已提交
374 375 376 377 378
    auto& deleter = tmp_allocation_ptr.get_deleter();
    auto* allocation_ptr = tmp_allocation_ptr.release();
    auto shared_allocation = std::shared_ptr<memory::allocation::Allocation>(
        allocation_ptr, deleter);

379
    PADDLE_ENFORCE_GE(allocation_ptr->size(),
X
Xin Pan 已提交
380 381 382 383 384 385 386 387 388
                      framework::product(dim) * sizeof(T));

    paddle::framework::Tensor temp_tensor(
        framework::ToDataType(std::type_index(typeid(T))));
    temp_tensor.Resize(dim);
    temp_tensor.ResetHolder(std::move(shared_allocation));
    return temp_tensor;
  }

H
hong 已提交
389 390 391
  const RuntimeContext Context() const { return ctx_; }

  std::string DebugString() const { return op_.DebugString(); }
H
hong 已提交
392

393
 private:
394 395
  const OperatorBase& op_;
  const Scope& scope_;
396
  const platform::DeviceContext& device_context_;
X
Xin Pan 已提交
397
  const RuntimeContext& ctx_;
Q
Qiao Longfei 已提交
398 399
};

400 401 402 403 404 405 406 407 408 409 410 411 412 413
template <>
const Tensor* ExecutionContext::Input<Tensor>(const std::string& name) const;

template <>
const std::vector<const Tensor*> ExecutionContext::MultiInput<Tensor>(
    const std::string& name) const;

template <>
Tensor* ExecutionContext::Output<Tensor>(const std::string& name) const;

template <>
std::vector<Tensor*> ExecutionContext::MultiOutput<Tensor>(
    const std::string& name) const;

Y
Yu Yang 已提交
414
class OpKernelBase {
Q
qijun 已提交
415
 public:
Q
qijun 已提交
416
  /**
417
   * ExecutionContext is the only parameter of Kernel Run function.
Q
qijun 已提交
418 419
   * Run will get input/output variables, state such as momentum and
   * device resource such as CUDA stream, cublas handle, etc. from
420
   * ExecutionContext. User should construct it before run the Operator.
Q
qijun 已提交
421 422
   */

423
  virtual void Compute(const ExecutionContext& context) const = 0;
Y
Yu Yang 已提交
424

Y
Yu Yang 已提交
425 426 427 428 429 430 431
  virtual ~OpKernelBase() = default;
};

template <typename T>
class OpKernel : public OpKernelBase {
 public:
  using ELEMENT_TYPE = T;
Y
Yu Yang 已提交
432 433
};

Y
Yu Yang 已提交
434 435
class OperatorWithKernel : public OperatorBase {
 public:
Y
yuyang18 已提交
436
  using OpKernelFunc = std::function<void(const ExecutionContext&)>;
Y
Yu Yang 已提交
437
  using OpKernelMap =
Y
yuyang18 已提交
438
      std::unordered_map<OpKernelType, OpKernelFunc, OpKernelType::Hash>;
Q
Qiao Longfei 已提交
439

Y
Yu Yang 已提交
440 441
  OperatorWithKernel(const std::string& type, const VariableNameMap& inputs,
                     const VariableNameMap& outputs, const AttributeMap& attrs)
Y
Yu Yang 已提交
442 443
      : OperatorBase(type, inputs, outputs, attrs) {}

Y
Yu Yang 已提交
444 445 446 447
  static std::unordered_map<std::string /* op_type */, OpKernelMap>&
  AllOpKernels() {
    static std::unordered_map<std::string, OpKernelMap> g_all_op_kernels;
    return g_all_op_kernels;
Y
Yu Yang 已提交
448
  }
Y
Yan Chunwei 已提交
449

450 451 452 453 454
  bool IsMKLDNNType() const {
    return ((this->kernel_type_) && (this->kernel_type_->data_layout_ ==
                                     framework::DataLayout::kMKLDNN));
  }

455
  bool SupportGPU() const override {
Y
Yu Yang 已提交
456 457 458 459 460
    auto& op_kernels = OperatorWithKernel::AllOpKernels().at(type_);
    return std::any_of(op_kernels.begin(), op_kernels.end(),
                       [](OpKernelMap::const_reference kern_pair) {
                         return platform::is_gpu_place(kern_pair.first.place_);
                       });
461 462
  }

463
  virtual void InferShape(InferShapeContext* ctx) const = 0;
Y
Yu Yang 已提交
464

X
Xin Pan 已提交
465 466
  void RuntimeInferShape(const Scope& scope, const platform::Place& place,
                         const RuntimeContext& ctx) const override;
B
baojun-nervana 已提交
467

468 469 470
  proto::VarType::Type IndicateVarDataType(const ExecutionContext& ctx,
                                           const std::string& name) const;

471
  virtual OpKernelType GetExpectedKernelType(const ExecutionContext& ctx) const;
X
Xin Pan 已提交
472

473 474
  // change this to public so that in dygraph mode we can call it to check if we
  // need transform data
475 476 477
  virtual OpKernelType GetKernelTypeForVar(
      const std::string& var_name, const Tensor& tensor,
      const OpKernelType& expected_kernel_type) const;
Y
Yu Yang 已提交
478 479

 private:
480 481
  void ParseInputDataType(const ExecutionContext& ctx, const std::string& name,
                          proto::VarType::Type* type) const;
482
  // indicate kernel DataType by input data. By default all input data must be
Y
Yu Yang 已提交
483
  // same.
484
  proto::VarType::Type IndicateDataType(const ExecutionContext& ctx) const;
485
  void RunImpl(const Scope& scope, const platform::Place& place) const final;
L
luotao1 已提交
486 487
  void RunImpl(const Scope& scope, const platform::Place& place,
               RuntimeContext* runtime_ctx) const;
Y
yuyang18 已提交
488 489

  /**
T
tianshuo78520a 已提交
490 491
   * Transfer data from scope to a transferred scope. If there is no data need
   * to
Y
yuyang18 已提交
492 493 494 495
   * be tranfered, it returns nullptr.
   *
   * * transfered_inplace_vars is a output vector.
   */
X
Xin Pan 已提交
496 497 498 499
  Scope* PrepareData(const Scope& scope,
                     const OpKernelType& expected_kernel_key,
                     std::vector<std::string>* transfered_inplace_vars,
                     RuntimeContext* ctx) const;
Y
yuyang18 已提交
500 501 502 503

  void TransferInplaceVarsBack(const Scope& scope,
                               const std::vector<std::string>& inplace_vars,
                               const Scope& exec_scope) const;
504

L
Liu Yiqun 已提交
505 506 507
  void ChooseKernel(const RuntimeContext& ctx, const Scope& scope,
                    const platform::Place& place) const;

508
 protected:
L
Liu Yiqun 已提交
509 510
  mutable std::unique_ptr<OpKernelType> kernel_type_;
  mutable std::unique_ptr<OpKernelFunc> kernel_func_;
L
luotao1 已提交
511 512
  mutable std::unique_ptr<RuntimeContext> runtime_ctx_;
  mutable const Scope* pre_scope_ = nullptr;
513
  mutable bool need_prepare_data_ = true;
514 515
  mutable bool enable_cache_runtime_context_ = false;
  mutable bool all_kernels_must_compute_runtime_shape_ = false;
516
  mutable std::mutex cache_update_mutex_;
517
  mutable bool enable_cache_transfer_scope_ = false;
Q
Qiao Longfei 已提交
518 519
};

Y
Yu Yang 已提交
520 521
extern bool OpSupportGPU(const std::string& op_type);

Q
Qiao Longfei 已提交
522 523
}  // namespace framework
}  // namespace paddle