unary.h 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

// See Note [ Why still include the fluid headers? ]
18
#include "paddle/phi/common/int_array.h"
19 20
#include "paddle/phi/common/scalar.h"
#include "paddle/phi/core/meta_tensor.h"
21

22
namespace phi {
23

24 25
class MetaConfig;

26
// Common InferMeta Functions for unary operators, The format like:
27
//
28 29
//   void [FunctionDesc|OpName]InferMeta(const MetaTensor& x, ..., MetaTensor*
//   out) {}
30 31 32 33
//
// NOTE: The name "InferShape" may be not appropriate. "InferMeta" may be good.
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
34 35
//
// The InferMeta Functions in this file are arranged in alphabetic order.
36

Z
zyfncg 已提交
37 38 39 40 41 42 43 44
void ArgMinMaxInferMeta(const MetaTensor& x,
                        int64_t axis,
                        bool keepdims,
                        bool flatten,
                        int dtype,
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());

L
Linjie Chen 已提交
45 46 47 48 49 50
void ArgsortInferMeta(const MetaTensor& input,
                      int axis,
                      bool descending,
                      MetaTensor* output,
                      MetaTensor* indices);

51 52 53 54 55 56
void BatchSizeLikeInferMeta(const MetaTensor& x,
                            const std::vector<int>& shape,
                            int x_batch_size_dim,
                            int out_batch_size_dim,
                            MetaTensor* out);

57
void CastInferMeta(const MetaTensor& x, DataType out_dtype, MetaTensor* out);
58

59 60
void CholeskyInferMeta(const MetaTensor& x, bool upper, MetaTensor* out);

61
void CreateLikeInferMeta(const MetaTensor& x, DataType dtype, MetaTensor* out);
62

63 64 65 66 67 68 69
void CumsumInferMeta(const MetaTensor& x,
                     int axis,
                     bool flatten,
                     bool exclusive,
                     bool reverse,
                     MetaTensor* out);

Z
zyfncg 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82
void DiagInferMeta(const MetaTensor& x,
                   int offset,
                   float padding_value,
                   MetaTensor* out);

void DiagonalInferMeta(
    const MetaTensor& input, int offset, int axis1, int axis2, MetaTensor* out);

void EighInferMeta(const MetaTensor& x,
                   const std::string& uplo,
                   MetaTensor* out_w,
                   MetaTensor* out_v);

83 84 85 86
void ExpandInferMeta(const MetaTensor& x,
                     const IntArray& shape,
                     MetaTensor* out);

Z
zyfncg 已提交
87 88 89 90 91
void FlattenInferMeta(const MetaTensor& x,
                      int start_axis,
                      int stop_axis,
                      MetaTensor* out);

92 93 94 95 96 97
void FlattenWithXShapeInferMeta(const MetaTensor& x,
                                int start_axis,
                                int stop_axis,
                                MetaTensor* out,
                                MetaTensor* xshape);

98 99 100 101
void FlipInferMeta(const MetaTensor& x,
                   const std::vector<int>& axis,
                   MetaTensor* out);

102 103 104 105 106 107 108 109
void FullBatchSizeLikeInferMeta(const MetaTensor& x,
                                const std::vector<int>& shape,
                                const Scalar& val,
                                DataType dtype,
                                int x_batch_size_dim,
                                int out_batch_size_dim,
                                MetaTensor* out);

Z
zyfncg 已提交
110 111 112 113 114
void GumbelSoftmaxInferMeta(const MetaTensor& x,
                            float temperature,
                            bool hard,
                            int axis,
                            MetaTensor* out);
H
hong 已提交
115 116
void HistogramInferMeta(
    const MetaTensor& input, int64_t bins, int min, int max, MetaTensor* out);
Z
zyfncg 已提交
117

118 119
void IncrementInferMeta(const MetaTensor& x, float value, MetaTensor* out);

120 121 122
void InferMetaFromVecValue(const MetaTensor& x,
                           const std::vector<int64_t>& shape,
                           MetaTensor* out);
123

W
WJJ1995 已提交
124 125
void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out);

Z
zyfncg 已提交
126 127
void IsfiniteInferMeta(const MetaTensor& input, MetaTensor* out);

128 129 130 131 132 133 134 135
void KthvalueInferMeta(const MetaTensor& x,
                       int k,
                       int axis,
                       bool keepdim,
                       MetaTensor* out,
                       MetaTensor* indices,
                       MetaConfig = MetaConfig());

136 137 138 139 140 141
void LogsumexpInferMeta(const MetaTensor& input,
                        const std::vector<int64_t>& axis,
                        bool keepdim,
                        bool reduce_all,
                        MetaTensor* out);

142 143
void MatrixPowerInferMeta(const MetaTensor& x, int n, MetaTensor* out);

144 145 146 147 148
void MatrixRankInferMeta(const MetaTensor& x,
                         bool use_default_tol,
                         bool hermitian,
                         MetaTensor* out);

149 150 151 152 153
void MaxOutInferMeta(const MetaTensor& x,
                     int groups,
                     int axis,
                     MetaTensor* out);

F
From00 已提交
154 155 156 157 158 159 160 161 162 163
void MaxPoolWithIndexInferMeta(const MetaTensor& x,
                               const std::vector<int>& kernel_size,
                               const std::vector<int>& strides,
                               const std::vector<int>& paddings,
                               bool global_pooling,
                               bool adaptive,
                               MetaTensor* out,
                               MetaTensor* mask,
                               MetaConfig config = MetaConfig());

164 165
void MeanAllInferMeta(const MetaTensor& x, MetaTensor* out);

166 167 168 169 170 171
void ModeInferMeta(const MetaTensor& x,
                   int axis,
                   bool keepdim,
                   MetaTensor* out,
                   MetaTensor* indices);

172 173 174 175
void MultinomialInferMeta(const MetaTensor& x,
                          int num_samples,
                          bool replacement,
                          MetaTensor* out);
H
hong 已提交
176 177 178 179 180 181
void NormInferMeta(const MetaTensor& x,
                   int axis,
                   float epsilon,
                   bool is_test,
                   MetaTensor* out,
                   MetaTensor* norm);
182

Z
zyfncg 已提交
183 184 185 186 187 188
void PadInferMeta(const MetaTensor& input,
                  const std::vector<int>& paddings,
                  float pad_value,
                  MetaTensor* out,
                  MetaConfig config = MetaConfig());

189
void Pad3dInferMeta(const MetaTensor& x,
190
                    const IntArray& paddings,
191 192 193 194 195 196
                    const std::string& mode,
                    float value,
                    const std::string& data_format,
                    MetaTensor* out,
                    MetaConfig config = MetaConfig());

Z
zyfncg 已提交
197 198 199 200 201
void PixelShuffleInferMeta(const MetaTensor& x,
                           int upscale_factor,
                           const std::string& data_format,
                           MetaTensor* out);

202 203 204 205 206
void PixelShuffleGradInferMeta(const MetaTensor& out_grad,
                               int upscale_factor,
                               const std::string& data_format,
                               MetaTensor* x_grad);

207 208 209 210 211 212 213 214
void PNormInferMeta(const MetaTensor& x,
                    float porder,
                    int axis,
                    float epsilon,
                    bool keepdim,
                    bool asvector,
                    MetaTensor* out);

F
From00 已提交
215 216 217 218 219 220 221 222 223 224 225 226 227 228
void PoolInferMeta(const MetaTensor& x,
                   const std::vector<int>& kernel_size,
                   const std::vector<int>& strides,
                   const std::vector<int>& paddings,
                   bool ceil_mode,
                   bool exclusive,
                   const std::string& data_format,
                   const std::string& pooling_type,
                   bool global_pooling,
                   bool adaptive,
                   const std::string& padding_algorithm,
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

229 230 231 232 233
void QrInferMeta(const MetaTensor& x,
                 const std::string& mode,
                 MetaTensor* q,
                 MetaTensor* r);

Z
zyfncg 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246
void RealAndImagInferMeta(const MetaTensor& x, MetaTensor* out);

void ReduceInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     MetaTensor* out);

void ReduceInferMetaBase(const MetaTensor& x,
                         const std::vector<int64_t>& axis,
                         bool keep_dim,
                         bool reduce_all,
                         MetaTensor* out);

247
void ReshapeInferMeta(const MetaTensor& x,
248
                      const IntArray& shape,
249 250 251 252
                      MetaTensor* out,
                      MetaConfig config = MetaConfig());

void ReshapeWithXShapeInferMeta(const MetaTensor& x,
253
                                const IntArray& shape,
254
                                MetaTensor* out,
255
                                MetaTensor* xshape,
256
                                MetaConfig config = MetaConfig());
257

258 259 260 261
void ReverseInferMeta(const MetaTensor& x,
                      const std::vector<int>& axis,
                      MetaTensor* out);

C
chenenquan 已提交
262
void RollInferMeta(const MetaTensor& x,
263
                   const IntArray& shifts,
C
chenenquan 已提交
264 265 266
                   const std::vector<int64_t>& axis,
                   MetaTensor* out);

267 268
void SetValueInferMeta(const MetaTensor& x, MetaTensor* out);

269 270
void ShapeInferMeta(const MetaTensor& input, MetaTensor* out);

Z
zyfncg 已提交
271 272 273 274 275 276 277
void ShardIndexInferMeta(const MetaTensor& in,
                         int index_num,
                         int nshards,
                         int shard_id,
                         int ignore_value,
                         MetaTensor* out,
                         MetaConfig config = MetaConfig());
278

Z
zyfncg 已提交
279
void SizeInferMeta(const MetaTensor& input, MetaTensor* out);
280

H
hong 已提交
281 282 283 284 285 286 287 288 289
void SliceRawInferMeta(const MetaTensor& input,
                       const std::vector<int64_t>& axes,
                       const IntArray& starts,
                       const IntArray& ends,
                       const std::vector<int64_t>& infer_flags,
                       const std::vector<int64_t>& decrease_axis,
                       MetaTensor* out,
                       MetaConfig config = MetaConfig());

Z
zyfncg 已提交
290
void SoftmaxInferMeta(const MetaTensor& x, int axis, MetaTensor* out);
291

Z
zyfncg 已提交
292
void SplitInferMeta(const MetaTensor& x_meta,
293
                    const IntArray& num_or_sections,
Z
zyfncg 已提交
294 295 296
                    const Scalar& axis,
                    std::vector<MetaTensor*> out,
                    MetaConfig config = MetaConfig());
297

298 299 300 301 302
void SqueezeInferMeta(const MetaTensor& x,
                      const std::vector<int>& axes,
                      MetaTensor* xshape,
                      MetaTensor* out);

303 304 305 306 307 308 309 310 311 312
void StridedSliceRawInferMeta(const MetaTensor& x,
                              const std::vector<int>& axes,
                              const IntArray& starts,
                              const IntArray& ends,
                              const IntArray& strides,
                              const std::vector<int>& infer_flags,
                              const std::vector<int>& decrease_axis,
                              MetaTensor* out,
                              MetaConfig config = MetaConfig());

313 314
void StridedSliceInferMeta(const MetaTensor& x,
                           const std::vector<int>& axes,
315 316 317
                           const IntArray& starts,
                           const IntArray& ends,
                           const IntArray& strides,
318 319 320
                           MetaTensor* out,
                           MetaConfig config = MetaConfig());

321 322 323 324 325
void SumInferMeta(const MetaTensor& x,
                  const std::vector<int64_t>& axis,
                  DataType dtype,
                  bool keep_dim,
                  MetaTensor* out);
326

Z
zyfncg 已提交
327 328 329 330 331 332 333
void SumRawInferMeta(const MetaTensor& x,
                     const std::vector<int64_t>& axis,
                     bool keep_dim,
                     bool reduce_all,
                     DataType dtype,
                     MetaTensor* out);

H
hong 已提交
334 335 336 337 338 339 340
void TemporalShiftInferMeta(const MetaTensor& x,
                            int seg_num,
                            float shift_ratio,
                            const std::string& data_format,
                            MetaTensor* out,
                            MetaConfig config = MetaConfig());

Z
zyfncg 已提交
341
void TileInferMeta(const MetaTensor& x,
342
                   const IntArray& repeat_times,
Z
zyfncg 已提交
343 344 345
                   MetaTensor* out,
                   MetaConfig config = MetaConfig());

346 347 348 349 350 351 352 353 354
void TopKInferMeta(const MetaTensor& x,
                   const Scalar& k_scalar,
                   int axis,
                   bool largest,
                   bool sorted,
                   MetaTensor* out,
                   MetaTensor* indices,
                   MetaConfig config = MetaConfig());

Z
zyfncg 已提交
355 356 357
void TraceInferMeta(
    const MetaTensor& x, int offset, int axis1, int axis2, MetaTensor* out);

358 359 360 361
void TransferLayoutInferMeta(const MetaTensor& x,
                             DataLayout layout,
                             MetaTensor* out);

Z
zyfncg 已提交
362 363 364
void TransposeInferMeta(const MetaTensor& x,
                        const std::vector<int>& axis,
                        MetaTensor* out);
C
Chen Weihang 已提交
365

H
hong 已提交
366 367 368 369
void TransposeGradInferMeta(const MetaTensor& x,
                            const std::vector<int>& axis,
                            MetaTensor* out);

370 371 372 373 374
void TrilTriuInferMeta(const MetaTensor& x,
                       int diagonal,
                       bool lower,
                       MetaTensor* out);

L
Leo Chen 已提交
375 376
void UnbindInferMeta(const MetaTensor& x,
                     int axis,
377
                     std::vector<MetaTensor*> outs);
Z
zyfncg 已提交
378 379 380 381 382 383 384

void UnchangedInferMeta(const MetaTensor& x, MetaTensor* out);

// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void UnchangedInferMetaCheckAxis(const MetaTensor& x,
                                 int axis,
                                 MetaTensor* out);
C
Chen Weihang 已提交
385

386 387 388 389 390 391 392
void UnfoldInferMeta(const MetaTensor& x,
                     const std::vector<int>& kernel_sizes,
                     const std::vector<int>& strides,
                     const std::vector<int>& paddings,
                     const std::vector<int>& dilations,
                     MetaTensor* out,
                     MetaConfig config = MetaConfig());
393

C
csy0225 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
void UniqueInferMeta(const MetaTensor& x,
                     bool return_index,
                     bool return_inverse,
                     bool return_counts,
                     const std::vector<int>& axis,
                     DataType dtype,
                     MetaTensor* out,
                     MetaTensor* indices,
                     MetaTensor* index,
                     MetaTensor* counts);

void UniqueRawInferMeta(const MetaTensor& x,
                        bool return_index,
                        bool return_inverse,
                        bool return_counts,
                        const std::vector<int>& axis,
                        DataType dtype,
                        bool is_sorted,
                        MetaTensor* out,
                        MetaTensor* indices,
                        MetaTensor* index,
                        MetaTensor* counts);

417
void UnsqueezeInferMeta(const MetaTensor& x,
418
                        const IntArray& axes,
419
                        MetaTensor* xshape,
420 421
                        MetaTensor* out,
                        MetaConfig config = MetaConfig());
422

C
csy0225 已提交
423 424 425 426 427
void UnStackInferMeta(const MetaTensor& x,
                      int axis,
                      int num,
                      std::vector<MetaTensor*> outs);

H
hong 已提交
428
void OneHotRawInferMeta(const MetaTensor& x,
429
                        const Scalar& depth,
H
hong 已提交
430 431 432 433 434 435
                        DataType dtype,
                        bool allow_out_of_range,
                        MetaTensor* out);

void OneHotInferMeta(const MetaTensor& x, const Scalar& depth, MetaTensor* out);

436 437
void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out);

438
}  // namespace phi