ps_dnn_trainer.py 21.2 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.distributed.fleet.base.role_maker as role_maker
from paddle.distributed.ps.utils.ps_program_builder import *
import paddle.distributed.fleet as fleet
import argparse
import sys
import yaml, six, copy
import paddle
import os
import ast
import numpy as np
import struct
26

Z
ziyoujiyi 已提交
27 28 29 30 31 32 33 34 35
sys.path.append("..")
from ps_dnn_model import StaticModel

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))


def is_distributed_env():
    node_role = os.getenv("TRAINING_ROLE")
36
    print("-- Role: {} --".format(node_role))
Z
ziyoujiyi 已提交
37 38 39 40 41 42 43
    if node_role is None:
        return False
    else:
        return True


class YamlHelper(object):
44

Z
ziyoujiyi 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122
    def load_yaml(self, yaml_file, other_part=None):
        part_list = ["runner", "hyper_parameters"]
        if other_part:
            part_list += other_part
        running_config = self.get_all_inters_from_yaml(yaml_file, part_list)
        running_config = self.workspace_adapter(running_config)
        return running_config

    def print_yaml(self, config):
        print(self.pretty_print_envs(config))

    def parse_yaml(self, config):
        vs = [int(i) for i in yaml.__version__.split(".")]
        if vs[0] < 5:
            use_full_loader = False
        elif vs[0] > 5:
            use_full_loader = True
        else:
            if vs[1] >= 1:
                use_full_loader = True
            else:
                use_full_loader = False

        if os.path.isfile(config):
            if six.PY2:
                with open(config, 'r') as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
            else:
                with open(config, 'r', encoding="utf-8") as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
        else:
            raise ValueError("config {} can not be supported".format(config))

    def get_all_inters_from_yaml(self, file, filters):
        _envs = self.parse_yaml(file)
        all_flattens = {}

        def fatten_env_namespace(namespace_nests, local_envs):
            for k, v in local_envs.items():
                if isinstance(v, dict):
                    nests = copy.deepcopy(namespace_nests)
                    nests.append(k)
                    fatten_env_namespace(nests, v)
                else:
                    global_k = ".".join(namespace_nests + [k])
                    all_flattens[global_k] = v

        fatten_env_namespace([], _envs)
        ret = {}
        for k, v in all_flattens.items():
            for f in filters:
                if k.startswith(f):
                    ret[k] = v
        return ret

    def workspace_adapter(self, config):
        workspace = config.get("workspace")
        for k, v in config.items():
            if isinstance(v, str) and "{workspace}" in v:
                config[k] = v.replace("{workspace}", workspace)
        return config

    def pretty_print_envs(self, envs, header=None):
        spacing = 2
        max_k = 40
        max_v = 45

        for k, v in envs.items():
            max_k = max(max_k, len(k))

123 124
        h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
            max_k, " " * spacing, max_v)
Z
ziyoujiyi 已提交
125 126 127 128 129 130 131 132 133 134 135 136
        l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
        length = max_k + max_v + spacing

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = ""
        draws += border + "\n"

        if header:
            draws += h_format.format(header[0], header[1])
        else:
Z
ziyoujiyi 已提交
137
            draws += h_format.format("Ps Benchmark Envs", "Value")
Z
ziyoujiyi 已提交
138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159

        draws += line + "\n"

        for k, v in sorted(envs.items()):
            if isinstance(v, str) and len(v) >= max_v:
                str_v = "... " + v[-41:]
            else:
                str_v = v

            draws += l_format.format(k, " " * spacing, str(str_v))

        draws += border

        _str = "\n{}\n".format(draws)
        return _str


def get_user_defined_strategy(config):
    if not is_distributed_env():
        logger.warn(
            "Not Find Distributed env, Change To local train mode. If you want train with fleet, please use [fleetrun] command."
        )
Z
ziyoujiyi 已提交
160
        #return None
Z
ziyoujiyi 已提交
161 162 163 164 165 166 167 168
    sync_mode = config.get("runner.sync_mode")
    assert sync_mode in ["async", "sync", "geo", "heter", "gpubox"]
    if sync_mode == "sync":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = False
    elif sync_mode == "async":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
169 170 171 172 173 174 175 176
        strategy.is_fl_ps_mode = True if config.get(
            "runner.is_fl_ps_mode") == 1 else False
        if strategy.is_fl_ps_mode == True:
            strategy.pipeline = False
            micro_num = 1
            strategy.pipeline_configs = {
                "accumulate_steps": micro_num
            }  ## num_microbatches
Z
ziyoujiyi 已提交
177 178 179 180 181 182 183 184
    elif sync_mode == "geo":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": config.get("runner.geo_step")}
    elif sync_mode == "heter":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"heter_worker_device_guard": "gpu"}
185 186 187 188
        strategy.pipeline = True
        strategy.pipeline_configs = {
            "accumulate_steps": config.get('runner.micro_num')
        }
Z
ziyoujiyi 已提交
189 190 191 192 193 194 195 196 197 198
    elif sync_mode == "gpubox":
        print("sync_mode = {}".format(sync_mode))
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"use_ps_gpu": 1}

    strategy.trainer_desc_configs = {
        "dump_fields_path": config.get("runner.dump_fields_path", ""),
        "dump_fields": config.get("runner.dump_fields", []),
        "dump_param": config.get("runner.dump_param", []),
199 200 201
        "stat_var_names": config.get("stat_var_names", []),
        "local_sparse": config.get("runner.local_sparse", []),
        "remote_sparse": config.get("runner.remote_sparse", [])
Z
ziyoujiyi 已提交
202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226
    }
    print("strategy:", strategy.trainer_desc_configs)

    if config.get("runner.fs_client.uri") is not None:
        strategy.fs_client_param = {
            "uri": config.get("runner.fs_client.uri", ""),
            "user": config.get("runner.fs_client.user", ""),
            "passwd": config.get("runner.fs_client.passwd", ""),
            "hadoop_bin": config.get("runner.fs_client.hadoop_bin", "hadoop")
        }
    print("strategy:", strategy.fs_client_param)

    strategy.adam_d2sum = config.get("hyper_parameters.adam_d2sum", True)
    table_config = {}
    for x in config:
        if x.startswith("table_parameters"):
            table_name = x.split('.')[1]
            if table_name not in table_config:
                table_config[table_name] = {}
            table_config[table_name][x] = config[x]
    print("table_config:", table_config)
    strategy.sparse_table_configs = table_config
    print("strategy table config:", strategy.sparse_table_configs)
    a_sync_configs = strategy.a_sync_configs
    a_sync_configs["launch_barrier"] = False
227
    # a_sync_configs["launch_barrier"] = True
Z
ziyoujiyi 已提交
228 229 230 231 232 233
    strategy.a_sync_configs = a_sync_configs
    print("launch_barrier: ", strategy.a_sync_configs["launch_barrier"])

    return strategy


234
def get_distributed_strategy(user_defined_strategy):  # pslib
Z
ziyoujiyi 已提交
235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
    from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

    k_steps = user_defined_strategy.a_sync_configs["k_steps"]
    strategy = None

    if not user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_sync_strategy()

    if user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_async_strategy()

    if user_defined_strategy.a_sync and k_steps > 0:
        strategy = StrategyFactory.create_geo_strategy(k_steps)

    if not strategy:
        raise ValueError("k_steps must be invalid value, please check")

    return strategy


def get_model(config):
    abs_dir = config['config_abs_dir']
    sys.path.append(abs_dir)
    static_model = StaticModel(config)
    return static_model


def parse_args():
    parser = argparse.ArgumentParser("PsTest train script")
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
    parser.add_argument('-m',
                        '--config_yaml',
                        type=str,
                        required=True,
                        help='config file path')
    parser.add_argument('-bf16',
                        '--pure_bf16',
                        type=ast.literal_eval,
                        default=False,
                        help="whether use bf16")

    parser.add_argument('--run_minimize',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--run_single_pass',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--run_the_one_ps',
                        type=int,
                        default=0,
                        help="test the_one_ps")
    parser.add_argument('--debug_new_minimize',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--debug_new_pass',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--applied_pass_name',
                        type=str,
                        default="",
                        help="test single pass")
    parser.add_argument('--debug_the_one_ps',
                        type=int,
                        default=0,
                        help="test the_one_ps")
Z
ziyoujiyi 已提交
303 304 305 306 307 308 309 310 311 312

    args = parser.parse_args()
    args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
    yaml_helper = YamlHelper()
    config = yaml_helper.load_yaml(args.config_yaml)
    config["yaml_path"] = args.config_yaml
    config["config_abs_dir"] = args.abs_dir
    config["pure_bf16"] = args.pure_bf16
    config['run_minimize'] = args.run_minimize
    config['run_single_pass'] = args.run_single_pass
Z
ziyoujiyi 已提交
313
    config['run_the_one_ps'] = args.run_the_one_ps
Z
ziyoujiyi 已提交
314 315 316
    config['debug_new_minimize'] = args.debug_new_minimize
    config['debug_new_pass'] = args.debug_new_pass
    config['applied_pass_name'] = args.applied_pass_name
Z
ziyoujiyi 已提交
317
    config['debug_the_one_ps'] = args.debug_the_one_ps
Z
ziyoujiyi 已提交
318 319 320 321 322 323 324 325 326
    yaml_helper.print_yaml(config)
    return config


def bf16_to_fp32(val):
    return np.float32(struct.unpack('<f', struct.pack('<I', val << 16))[0])


class DnnTrainer(object):
327

Z
ziyoujiyi 已提交
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
    def __init__(self, config):
        self.metrics = {}
        self.config = config
        self.input_data = None
        self.reader = None
        self.exe = None
        self.train_result_dict = {}
        self.train_result_dict["speed"] = []
        self.model = None
        self.pure_bf16 = self.config['pure_bf16']
        self.role_maker = role_maker.PaddleCloudRoleMaker()

    def init_fleet_with_gloo(self, use_gloo=False):
        if use_gloo:
            os.environ["PADDLE_WITH_GLOO"] = "1"
            fleet.init(self.role_maker)
        else:
            fleet.init()

        if fleet.is_server():
348
            print("server: {} started".format(fleet.server_index()))
Z
ziyoujiyi 已提交
349
        else:
350
            print("worker: {} started".format(fleet.worker_index()))
Z
ziyoujiyi 已提交
351 352 353 354

    def run_minimize(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
355
        print("cpu_num: {}".format(os.getenv("CPU_NUM")))
Z
ziyoujiyi 已提交
356 357 358 359 360 361
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
362
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
363 364
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

365
        self.role_maker._generate_role()  # 必要
Z
ziyoujiyi 已提交
366
        if self.config['debug_new_minimize'] == 1:
367
            print("entering run_minimize -- new")
Z
ziyoujiyi 已提交
368 369 370 371 372 373
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)
        else:
374
            print("entering run_minimize -- old")
Z
ziyoujiyi 已提交
375 376 377 378 379
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  ## Fleet 对象
            fleet_obj.minimize(loss)

        if fleet.is_server():
Z
ziyoujiyi 已提交
380
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
381
                self.config['debug_new_minimize']) + '_server_main.prototxt'
382
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
383
        elif fleet.is_worker():
Z
ziyoujiyi 已提交
384
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
385
                self.config['debug_new_minimize']) + '_worker_main.prototxt'
386 387
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
Z
ziyoujiyi 已提交
388
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
389 390
                self.config['debug_new_minimize']
            ) + '_heter_worker_main.prototxt'
391
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
392 393 394 395 396 397 398 399 400

    def run_single_pass(self):
        self.init_fleet_with_gloo()
        self.model = get_model(config)
        input_data = self.model.create_feeds()
        metrics = self.model.net(input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(config)
        learning_rate = config.get("hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
401
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
402 403 404 405
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)
        startup_program = paddle.static.default_startup_program()
        inner_optimizer.minimize(loss, startup_program)
        if self.config['debug_new_pass'] == 1:
406
            print("entering run {} - new".format(
Z
ziyoujiyi 已提交
407
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
408 409 410 411
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
412
            ps_optimizer._set_origin_programs([loss])
Z
ziyoujiyi 已提交
413
            ps_optimizer._init_ps_pass_context(loss, startup_program)
Z
ziyoujiyi 已提交
414
            _main = ps_optimizer.pass_ctx._attrs['cloned_main']
Z
ziyoujiyi 已提交
415 416

            append_send_ops_pass = new_pass(config["applied_pass_name"],
Z
ziyoujiyi 已提交
417
                                            ps_optimizer.pass_ctx._attrs)
Z
ziyoujiyi 已提交
418 419
            append_send_ops_pass.apply([_main], [None], ps_optimizer.pass_ctx)
        else:
420
            print("entering run {} - old".format(
Z
ziyoujiyi 已提交
421
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
422 423 424 425 426 427 428 429 430 431 432 433
            from paddle.fluid.incubate.fleet.parameter_server.ir import public as public
            dist_strategy = get_distributed_strategy(user_defined_strategy)
            compiled_config = public.CompileTimeStrategy(
                loss.block.program, startup_program, dist_strategy,
                self.role_maker)

            _main = compiled_config.origin_main_program.clone()
            _startup = compiled_config.origin_startup_program.clone()
            from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker
            _main = worker.append_send_ops_pass(_main, compiled_config)

        if fleet.is_server():
434 435 436
            _main_file = ps_log_root_dir + sync_mode + "_" + str(
                config["applied_pass_name"]) + '_debug:_' + str(
                    self.config['debug_new_pass']) + '_server_main.prototxt'
437
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
438
        elif fleet.is_worker():
439 440 441
            _main_file = ps_log_root_dir + sync_mode + "_" + str(
                config["applied_pass_name"]) + '_debug:_' + str(
                    self.config['debug_new_pass']) + '_worker_main.prototxt'
442
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
443

Z
ziyoujiyi 已提交
444 445 446 447 448 449 450 451 452 453 454 455 456 457
    def run_the_one_ps(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
        sync_mode = self.config.get("runner.sync_mode")
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

        self.role_maker._generate_role()  # 必要
        if self.config['debug_the_one_ps'] == 1:
458
            print("entering run_the_one_ps -- new")
Z
ziyoujiyi 已提交
459 460 461 462 463 464 465 466 467 468 469 470 471

            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)

            from paddle.distributed.ps.the_one_ps import TheOnePSRuntime
            _runtime_handle = TheOnePSRuntime()  # ps 目录下重构版的 TheOnePSRuntime
            _runtime_handle._set_basic_info(ps_optimizer.pass_ctx._attrs)
            if fleet.is_worker():
                worker_desc = _runtime_handle.ps_desc_builder.build_worker_desc(
                )
472 473 474
                with open(
                        ps_log_root_dir + sync_mode + '_' +
                        'new_worker_ps_desc', 'w') as f:
Z
ziyoujiyi 已提交
475 476 477 478
                    f.write(worker_desc)
            if fleet.is_server():
                server_desc = _runtime_handle.ps_desc_builder.build_server_desc(
                )
479 480 481
                with open(
                        ps_log_root_dir + sync_mode + '_' +
                        'new_server_ps_desc', 'w') as f:
Z
ziyoujiyi 已提交
482 483 484 485
                    f.write(server_desc)

        else:
            pass
486
        '''
487
            print("entering run_the_one_ps -- old")
Z
ziyoujiyi 已提交
488
            fleet_obj = fleet.distributed_optimizer(
489 490
                inner_optimizer, user_defined_strategy)
            fleet_obj.minimize(loss)
Z
ziyoujiyi 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513
            if fleet.is_worker():
                worker_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=False, is_sync=False)
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'worker_ps_desc', 'w') as f:
                    f.write(str(worker_desc) + str(server_desc))
            if fleet.is_server():
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'server_ps_desc', 'w') as f:
                    f.write(str(server_desc) + str(fleet_obj._runtime_handle._get_fs_client_desc().to_string()))
        '''
        if fleet.is_server():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_server_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif fleet.is_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_heter_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)

Z
ziyoujiyi 已提交
514 515 516 517

if __name__ == "__main__":
    paddle.enable_static()
    config = parse_args()
518
    print(">>>>>>>>>> python process started")
Z
ziyoujiyi 已提交
519 520 521 522 523 524
    os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
    benchmark_main = DnnTrainer(config)
    if config['run_single_pass'] == 1:
        benchmark_main.run_single_pass()
    elif config['run_minimize'] == 1:
        benchmark_main.run_minimize()
Z
ziyoujiyi 已提交
525 526
    elif config['run_the_one_ps'] == 1:
        benchmark_main.run_the_one_ps()