ps_dnn_trainer.py 20.6 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle.distributed.fleet.base.role_maker as role_maker
from paddle.distributed.ps.utils.ps_program_builder import *
import paddle.distributed.fleet as fleet
import argparse
import time
import sys
import yaml, six, copy
import paddle
import os
import warnings
import ast
import numpy as np
import struct
sys.path.append("..")
from ps_dnn_model import StaticModel

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))


def is_distributed_env():
    node_role = os.getenv("TRAINING_ROLE")
38
    print("-- Role: {} --".format(node_role))
Z
ziyoujiyi 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    if node_role is None:
        return False
    else:
        return True


class YamlHelper(object):
    def load_yaml(self, yaml_file, other_part=None):
        part_list = ["runner", "hyper_parameters"]
        if other_part:
            part_list += other_part
        running_config = self.get_all_inters_from_yaml(yaml_file, part_list)
        running_config = self.workspace_adapter(running_config)
        return running_config

    def print_yaml(self, config):
        print(self.pretty_print_envs(config))

    def parse_yaml(self, config):
        vs = [int(i) for i in yaml.__version__.split(".")]
        if vs[0] < 5:
            use_full_loader = False
        elif vs[0] > 5:
            use_full_loader = True
        else:
            if vs[1] >= 1:
                use_full_loader = True
            else:
                use_full_loader = False

        if os.path.isfile(config):
            if six.PY2:
                with open(config, 'r') as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
            else:
                with open(config, 'r', encoding="utf-8") as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
        else:
            raise ValueError("config {} can not be supported".format(config))

    def get_all_inters_from_yaml(self, file, filters):
        _envs = self.parse_yaml(file)
        all_flattens = {}

        def fatten_env_namespace(namespace_nests, local_envs):
            for k, v in local_envs.items():
                if isinstance(v, dict):
                    nests = copy.deepcopy(namespace_nests)
                    nests.append(k)
                    fatten_env_namespace(nests, v)
                else:
                    global_k = ".".join(namespace_nests + [k])
                    all_flattens[global_k] = v

        fatten_env_namespace([], _envs)
        ret = {}
        for k, v in all_flattens.items():
            for f in filters:
                if k.startswith(f):
                    ret[k] = v
        return ret

    def workspace_adapter(self, config):
        workspace = config.get("workspace")
        for k, v in config.items():
            if isinstance(v, str) and "{workspace}" in v:
                config[k] = v.replace("{workspace}", workspace)
        return config

    def pretty_print_envs(self, envs, header=None):
        spacing = 2
        max_k = 40
        max_v = 45

        for k, v in envs.items():
            max_k = max(max_k, len(k))

        h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " *
                                                              spacing, max_v)
        l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
        length = max_k + max_v + spacing

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = ""
        draws += border + "\n"

        if header:
            draws += h_format.format(header[0], header[1])
        else:
Z
ziyoujiyi 已提交
138
            draws += h_format.format("Ps Benchmark Envs", "Value")
Z
ziyoujiyi 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

        draws += line + "\n"

        for k, v in sorted(envs.items()):
            if isinstance(v, str) and len(v) >= max_v:
                str_v = "... " + v[-41:]
            else:
                str_v = v

            draws += l_format.format(k, " " * spacing, str(str_v))

        draws += border

        _str = "\n{}\n".format(draws)
        return _str


def get_user_defined_strategy(config):
    if not is_distributed_env():
        logger.warn(
            "Not Find Distributed env, Change To local train mode. If you want train with fleet, please use [fleetrun] command."
        )
Z
ziyoujiyi 已提交
161
        #return None
Z
ziyoujiyi 已提交
162 163 164 165 166 167 168 169
    sync_mode = config.get("runner.sync_mode")
    assert sync_mode in ["async", "sync", "geo", "heter", "gpubox"]
    if sync_mode == "sync":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = False
    elif sync_mode == "async":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
170 171 172 173 174 175 176 177
        strategy.is_fl_ps_mode = True if config.get(
            "runner.is_fl_ps_mode") == 1 else False
        if strategy.is_fl_ps_mode == True:
            strategy.pipeline = False
            micro_num = 1
            strategy.pipeline_configs = {
                "accumulate_steps": micro_num
            }  ## num_microbatches
Z
ziyoujiyi 已提交
178 179 180 181 182 183 184 185
    elif sync_mode == "geo":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": config.get("runner.geo_step")}
    elif sync_mode == "heter":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"heter_worker_device_guard": "gpu"}
186 187 188 189
        strategy.pipeline = True
        strategy.pipeline_configs = {
            "accumulate_steps": config.get('runner.micro_num')
        }
Z
ziyoujiyi 已提交
190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
    elif sync_mode == "gpubox":
        print("sync_mode = {}".format(sync_mode))
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"use_ps_gpu": 1}

    strategy.trainer_desc_configs = {
        "dump_fields_path": config.get("runner.dump_fields_path", ""),
        "dump_fields": config.get("runner.dump_fields", []),
        "dump_param": config.get("runner.dump_param", []),
        "stat_var_names": config.get("stat_var_names", [])
    }
    print("strategy:", strategy.trainer_desc_configs)

    if config.get("runner.fs_client.uri") is not None:
        strategy.fs_client_param = {
            "uri": config.get("runner.fs_client.uri", ""),
            "user": config.get("runner.fs_client.user", ""),
            "passwd": config.get("runner.fs_client.passwd", ""),
            "hadoop_bin": config.get("runner.fs_client.hadoop_bin", "hadoop")
        }
    print("strategy:", strategy.fs_client_param)

    strategy.adam_d2sum = config.get("hyper_parameters.adam_d2sum", True)
    table_config = {}
    for x in config:
        if x.startswith("table_parameters"):
            table_name = x.split('.')[1]
            if table_name not in table_config:
                table_config[table_name] = {}
            table_config[table_name][x] = config[x]
    print("table_config:", table_config)
    strategy.sparse_table_configs = table_config
    print("strategy table config:", strategy.sparse_table_configs)
    a_sync_configs = strategy.a_sync_configs
    a_sync_configs["launch_barrier"] = False
226
    # a_sync_configs["launch_barrier"] = True
Z
ziyoujiyi 已提交
227 228 229 230 231 232
    strategy.a_sync_configs = a_sync_configs
    print("launch_barrier: ", strategy.a_sync_configs["launch_barrier"])

    return strategy


233
def get_distributed_strategy(user_defined_strategy):  # pslib
Z
ziyoujiyi 已提交
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
    from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

    k_steps = user_defined_strategy.a_sync_configs["k_steps"]
    strategy = None

    if not user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_sync_strategy()

    if user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_async_strategy()

    if user_defined_strategy.a_sync and k_steps > 0:
        strategy = StrategyFactory.create_geo_strategy(k_steps)

    if not strategy:
        raise ValueError("k_steps must be invalid value, please check")

    return strategy


def get_model(config):
    abs_dir = config['config_abs_dir']
    sys.path.append(abs_dir)
    static_model = StaticModel(config)
    return static_model


def parse_args():
    parser = argparse.ArgumentParser("PsTest train script")
    parser.add_argument(
        '-m', '--config_yaml', type=str, required=True, help='config file path')
    parser.add_argument(
        '-bf16',
        '--pure_bf16',
        type=ast.literal_eval,
        default=False,
        help="whether use bf16")

    parser.add_argument(
        '--run_minimize', type=int, default=0, help="test single pass")
    parser.add_argument(
        '--run_single_pass', type=int, default=0, help="test single pass")
Z
ziyoujiyi 已提交
276 277
    parser.add_argument(
        '--run_the_one_ps', type=int, default=0, help="test the_one_ps")
Z
ziyoujiyi 已提交
278 279 280 281 282 283
    parser.add_argument(
        '--debug_new_minimize', type=int, default=0, help="test single pass")
    parser.add_argument(
        '--debug_new_pass', type=int, default=0, help="test single pass")
    parser.add_argument(
        '--applied_pass_name', type=str, default="", help="test single pass")
Z
ziyoujiyi 已提交
284 285
    parser.add_argument(
        '--debug_the_one_ps', type=int, default=0, help="test the_one_ps")
Z
ziyoujiyi 已提交
286 287 288 289 290 291 292 293 294 295

    args = parser.parse_args()
    args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
    yaml_helper = YamlHelper()
    config = yaml_helper.load_yaml(args.config_yaml)
    config["yaml_path"] = args.config_yaml
    config["config_abs_dir"] = args.abs_dir
    config["pure_bf16"] = args.pure_bf16
    config['run_minimize'] = args.run_minimize
    config['run_single_pass'] = args.run_single_pass
Z
ziyoujiyi 已提交
296
    config['run_the_one_ps'] = args.run_the_one_ps
Z
ziyoujiyi 已提交
297 298 299
    config['debug_new_minimize'] = args.debug_new_minimize
    config['debug_new_pass'] = args.debug_new_pass
    config['applied_pass_name'] = args.applied_pass_name
Z
ziyoujiyi 已提交
300
    config['debug_the_one_ps'] = args.debug_the_one_ps
Z
ziyoujiyi 已提交
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329
    yaml_helper.print_yaml(config)
    return config


def bf16_to_fp32(val):
    return np.float32(struct.unpack('<f', struct.pack('<I', val << 16))[0])


class DnnTrainer(object):
    def __init__(self, config):
        self.metrics = {}
        self.config = config
        self.input_data = None
        self.reader = None
        self.exe = None
        self.train_result_dict = {}
        self.train_result_dict["speed"] = []
        self.model = None
        self.pure_bf16 = self.config['pure_bf16']
        self.role_maker = role_maker.PaddleCloudRoleMaker()

    def init_fleet_with_gloo(self, use_gloo=False):
        if use_gloo:
            os.environ["PADDLE_WITH_GLOO"] = "1"
            fleet.init(self.role_maker)
        else:
            fleet.init()

        if fleet.is_server():
330
            print("server: {} started".format(fleet.server_index()))
Z
ziyoujiyi 已提交
331
        else:
332
            print("worker: {} started".format(fleet.worker_index()))
Z
ziyoujiyi 已提交
333 334 335 336

    def run_minimize(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
337
        print("cpu_num: {}".format(os.getenv("CPU_NUM")))
Z
ziyoujiyi 已提交
338 339 340 341 342 343
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
344
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
345 346
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

347
        self.role_maker._generate_role()  # 必要
Z
ziyoujiyi 已提交
348
        if self.config['debug_new_minimize'] == 1:
349
            print("entering run_minimize -- new")
Z
ziyoujiyi 已提交
350 351 352 353 354 355
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)
        else:
356
            print("entering run_minimize -- old")
Z
ziyoujiyi 已提交
357 358 359 360 361
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  ## Fleet 对象
            fleet_obj.minimize(loss)

        if fleet.is_server():
Z
ziyoujiyi 已提交
362
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
363
                self.config['debug_new_minimize']) + '_server_main.prototxt'
364
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
365
        elif fleet.is_worker():
Z
ziyoujiyi 已提交
366
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
367
                self.config['debug_new_minimize']) + '_worker_main.prototxt'
368 369
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
Z
ziyoujiyi 已提交
370
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
371 372 373
                self.config[
                    'debug_new_minimize']) + '_heter_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
374 375 376 377 378 379 380 381 382

    def run_single_pass(self):
        self.init_fleet_with_gloo()
        self.model = get_model(config)
        input_data = self.model.create_feeds()
        metrics = self.model.net(input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(config)
        learning_rate = config.get("hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
383
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
384 385 386 387
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)
        startup_program = paddle.static.default_startup_program()
        inner_optimizer.minimize(loss, startup_program)
        if self.config['debug_new_pass'] == 1:
388
            print("entering run {} - new".format(
Z
ziyoujiyi 已提交
389
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
390 391 392 393
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
394
            ps_optimizer._set_origin_programs([loss])
Z
ziyoujiyi 已提交
395
            ps_optimizer._init_ps_pass_context(loss, startup_program)
Z
ziyoujiyi 已提交
396
            _main = ps_optimizer.pass_ctx._attrs['cloned_main']
Z
ziyoujiyi 已提交
397 398

            append_send_ops_pass = new_pass(config["applied_pass_name"],
Z
ziyoujiyi 已提交
399
                                            ps_optimizer.pass_ctx._attrs)
Z
ziyoujiyi 已提交
400 401
            append_send_ops_pass.apply([_main], [None], ps_optimizer.pass_ctx)
        else:
402
            print("entering run {} - old".format(
Z
ziyoujiyi 已提交
403
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
404 405 406 407 408 409 410 411 412 413 414 415
            from paddle.fluid.incubate.fleet.parameter_server.ir import public as public
            dist_strategy = get_distributed_strategy(user_defined_strategy)
            compiled_config = public.CompileTimeStrategy(
                loss.block.program, startup_program, dist_strategy,
                self.role_maker)

            _main = compiled_config.origin_main_program.clone()
            _startup = compiled_config.origin_startup_program.clone()
            from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker
            _main = worker.append_send_ops_pass(_main, compiled_config)

        if fleet.is_server():
Z
ziyoujiyi 已提交
416
            _main_file = ps_log_root_dir + sync_mode + "_" + str(config[
Z
ziyoujiyi 已提交
417
                "applied_pass_name"]) + '_debug:_' + str(self.config[
Z
ziyoujiyi 已提交
418
                    'debug_new_pass']) + '_server_main.prototxt'
419
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
420
        elif fleet.is_worker():
Z
ziyoujiyi 已提交
421
            _main_file = ps_log_root_dir + sync_mode + "_" + str(config[
Z
ziyoujiyi 已提交
422
                "applied_pass_name"]) + '_debug:_' + str(self.config[
Z
ziyoujiyi 已提交
423
                    'debug_new_pass']) + '_worker_main.prototxt'
424
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
425

Z
ziyoujiyi 已提交
426 427 428 429 430 431 432 433 434 435 436 437 438 439
    def run_the_one_ps(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
        sync_mode = self.config.get("runner.sync_mode")
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

        self.role_maker._generate_role()  # 必要
        if self.config['debug_the_one_ps'] == 1:
440
            print("entering run_the_one_ps -- new")
Z
ziyoujiyi 已提交
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466

            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)

            from paddle.distributed.ps.the_one_ps import TheOnePSRuntime
            _runtime_handle = TheOnePSRuntime()  # ps 目录下重构版的 TheOnePSRuntime
            _runtime_handle._set_basic_info(ps_optimizer.pass_ctx._attrs)
            if fleet.is_worker():
                worker_desc = _runtime_handle.ps_desc_builder.build_worker_desc(
                )
                with open(ps_log_root_dir + sync_mode + '_' +
                          'new_worker_ps_desc', 'w') as f:
                    f.write(worker_desc)
            if fleet.is_server():
                server_desc = _runtime_handle.ps_desc_builder.build_server_desc(
                )
                with open(ps_log_root_dir + sync_mode + '_' +
                          'new_server_ps_desc', 'w') as f:
                    f.write(server_desc)

        else:
            pass
        '''          
467
            print("entering run_the_one_ps -- old")
Z
ziyoujiyi 已提交
468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  
            fleet_obj.minimize(loss)  
            if fleet.is_worker():
                worker_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=False, is_sync=False)
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'worker_ps_desc', 'w') as f:
                    f.write(str(worker_desc) + str(server_desc))
            if fleet.is_server():
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'server_ps_desc', 'w') as f:
                    f.write(str(server_desc) + str(fleet_obj._runtime_handle._get_fs_client_desc().to_string()))
        '''
        if fleet.is_server():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_server_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif fleet.is_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_heter_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)

Z
ziyoujiyi 已提交
494 495 496 497

if __name__ == "__main__":
    paddle.enable_static()
    config = parse_args()
498
    print(">>>>>>>>>> python process started")
Z
ziyoujiyi 已提交
499 500 501 502 503 504
    os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
    benchmark_main = DnnTrainer(config)
    if config['run_single_pass'] == 1:
        benchmark_main.run_single_pass()
    elif config['run_minimize'] == 1:
        benchmark_main.run_minimize()
Z
ziyoujiyi 已提交
505 506
    elif config['run_the_one_ps'] == 1:
        benchmark_main.run_the_one_ps()