ps_dnn_trainer.py 21.2 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle.distributed.fleet.base.role_maker as role_maker
from paddle.distributed.ps.utils.ps_program_builder import *
import paddle.distributed.fleet as fleet
import argparse
import time
import sys
import yaml, six, copy
import paddle
import os
import warnings
import ast
import numpy as np
import struct
29

Z
ziyoujiyi 已提交
30 31 32 33 34 35 36 37 38
sys.path.append("..")
from ps_dnn_model import StaticModel

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))


def is_distributed_env():
    node_role = os.getenv("TRAINING_ROLE")
39
    print("-- Role: {} --".format(node_role))
Z
ziyoujiyi 已提交
40 41 42 43 44 45 46
    if node_role is None:
        return False
    else:
        return True


class YamlHelper(object):
47

Z
ziyoujiyi 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    def load_yaml(self, yaml_file, other_part=None):
        part_list = ["runner", "hyper_parameters"]
        if other_part:
            part_list += other_part
        running_config = self.get_all_inters_from_yaml(yaml_file, part_list)
        running_config = self.workspace_adapter(running_config)
        return running_config

    def print_yaml(self, config):
        print(self.pretty_print_envs(config))

    def parse_yaml(self, config):
        vs = [int(i) for i in yaml.__version__.split(".")]
        if vs[0] < 5:
            use_full_loader = False
        elif vs[0] > 5:
            use_full_loader = True
        else:
            if vs[1] >= 1:
                use_full_loader = True
            else:
                use_full_loader = False

        if os.path.isfile(config):
            if six.PY2:
                with open(config, 'r') as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
            else:
                with open(config, 'r', encoding="utf-8") as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
        else:
            raise ValueError("config {} can not be supported".format(config))

    def get_all_inters_from_yaml(self, file, filters):
        _envs = self.parse_yaml(file)
        all_flattens = {}

        def fatten_env_namespace(namespace_nests, local_envs):
            for k, v in local_envs.items():
                if isinstance(v, dict):
                    nests = copy.deepcopy(namespace_nests)
                    nests.append(k)
                    fatten_env_namespace(nests, v)
                else:
                    global_k = ".".join(namespace_nests + [k])
                    all_flattens[global_k] = v

        fatten_env_namespace([], _envs)
        ret = {}
        for k, v in all_flattens.items():
            for f in filters:
                if k.startswith(f):
                    ret[k] = v
        return ret

    def workspace_adapter(self, config):
        workspace = config.get("workspace")
        for k, v in config.items():
            if isinstance(v, str) and "{workspace}" in v:
                config[k] = v.replace("{workspace}", workspace)
        return config

    def pretty_print_envs(self, envs, header=None):
        spacing = 2
        max_k = 40
        max_v = 45

        for k, v in envs.items():
            max_k = max(max_k, len(k))

126 127
        h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
            max_k, " " * spacing, max_v)
Z
ziyoujiyi 已提交
128 129 130 131 132 133 134 135 136 137 138 139
        l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
        length = max_k + max_v + spacing

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = ""
        draws += border + "\n"

        if header:
            draws += h_format.format(header[0], header[1])
        else:
Z
ziyoujiyi 已提交
140
            draws += h_format.format("Ps Benchmark Envs", "Value")
Z
ziyoujiyi 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

        draws += line + "\n"

        for k, v in sorted(envs.items()):
            if isinstance(v, str) and len(v) >= max_v:
                str_v = "... " + v[-41:]
            else:
                str_v = v

            draws += l_format.format(k, " " * spacing, str(str_v))

        draws += border

        _str = "\n{}\n".format(draws)
        return _str


def get_user_defined_strategy(config):
    if not is_distributed_env():
        logger.warn(
            "Not Find Distributed env, Change To local train mode. If you want train with fleet, please use [fleetrun] command."
        )
Z
ziyoujiyi 已提交
163
        #return None
Z
ziyoujiyi 已提交
164 165 166 167 168 169 170 171
    sync_mode = config.get("runner.sync_mode")
    assert sync_mode in ["async", "sync", "geo", "heter", "gpubox"]
    if sync_mode == "sync":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = False
    elif sync_mode == "async":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
172 173 174 175 176 177 178 179
        strategy.is_fl_ps_mode = True if config.get(
            "runner.is_fl_ps_mode") == 1 else False
        if strategy.is_fl_ps_mode == True:
            strategy.pipeline = False
            micro_num = 1
            strategy.pipeline_configs = {
                "accumulate_steps": micro_num
            }  ## num_microbatches
Z
ziyoujiyi 已提交
180 181 182 183 184 185 186 187
    elif sync_mode == "geo":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": config.get("runner.geo_step")}
    elif sync_mode == "heter":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"heter_worker_device_guard": "gpu"}
188 189 190 191
        strategy.pipeline = True
        strategy.pipeline_configs = {
            "accumulate_steps": config.get('runner.micro_num')
        }
Z
ziyoujiyi 已提交
192 193 194 195 196 197 198 199 200 201
    elif sync_mode == "gpubox":
        print("sync_mode = {}".format(sync_mode))
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"use_ps_gpu": 1}

    strategy.trainer_desc_configs = {
        "dump_fields_path": config.get("runner.dump_fields_path", ""),
        "dump_fields": config.get("runner.dump_fields", []),
        "dump_param": config.get("runner.dump_param", []),
202 203 204
        "stat_var_names": config.get("stat_var_names", []),
        "local_sparse": config.get("runner.local_sparse", []),
        "remote_sparse": config.get("runner.remote_sparse", [])
Z
ziyoujiyi 已提交
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
    }
    print("strategy:", strategy.trainer_desc_configs)

    if config.get("runner.fs_client.uri") is not None:
        strategy.fs_client_param = {
            "uri": config.get("runner.fs_client.uri", ""),
            "user": config.get("runner.fs_client.user", ""),
            "passwd": config.get("runner.fs_client.passwd", ""),
            "hadoop_bin": config.get("runner.fs_client.hadoop_bin", "hadoop")
        }
    print("strategy:", strategy.fs_client_param)

    strategy.adam_d2sum = config.get("hyper_parameters.adam_d2sum", True)
    table_config = {}
    for x in config:
        if x.startswith("table_parameters"):
            table_name = x.split('.')[1]
            if table_name not in table_config:
                table_config[table_name] = {}
            table_config[table_name][x] = config[x]
    print("table_config:", table_config)
    strategy.sparse_table_configs = table_config
    print("strategy table config:", strategy.sparse_table_configs)
    a_sync_configs = strategy.a_sync_configs
    a_sync_configs["launch_barrier"] = False
230
    # a_sync_configs["launch_barrier"] = True
Z
ziyoujiyi 已提交
231 232 233 234 235 236
    strategy.a_sync_configs = a_sync_configs
    print("launch_barrier: ", strategy.a_sync_configs["launch_barrier"])

    return strategy


237
def get_distributed_strategy(user_defined_strategy):  # pslib
Z
ziyoujiyi 已提交
238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

    k_steps = user_defined_strategy.a_sync_configs["k_steps"]
    strategy = None

    if not user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_sync_strategy()

    if user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_async_strategy()

    if user_defined_strategy.a_sync and k_steps > 0:
        strategy = StrategyFactory.create_geo_strategy(k_steps)

    if not strategy:
        raise ValueError("k_steps must be invalid value, please check")

    return strategy


def get_model(config):
    abs_dir = config['config_abs_dir']
    sys.path.append(abs_dir)
    static_model = StaticModel(config)
    return static_model


def parse_args():
    parser = argparse.ArgumentParser("PsTest train script")
267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305
    parser.add_argument('-m',
                        '--config_yaml',
                        type=str,
                        required=True,
                        help='config file path')
    parser.add_argument('-bf16',
                        '--pure_bf16',
                        type=ast.literal_eval,
                        default=False,
                        help="whether use bf16")

    parser.add_argument('--run_minimize',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--run_single_pass',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--run_the_one_ps',
                        type=int,
                        default=0,
                        help="test the_one_ps")
    parser.add_argument('--debug_new_minimize',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--debug_new_pass',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--applied_pass_name',
                        type=str,
                        default="",
                        help="test single pass")
    parser.add_argument('--debug_the_one_ps',
                        type=int,
                        default=0,
                        help="test the_one_ps")
Z
ziyoujiyi 已提交
306 307 308 309 310 311 312 313 314 315

    args = parser.parse_args()
    args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
    yaml_helper = YamlHelper()
    config = yaml_helper.load_yaml(args.config_yaml)
    config["yaml_path"] = args.config_yaml
    config["config_abs_dir"] = args.abs_dir
    config["pure_bf16"] = args.pure_bf16
    config['run_minimize'] = args.run_minimize
    config['run_single_pass'] = args.run_single_pass
Z
ziyoujiyi 已提交
316
    config['run_the_one_ps'] = args.run_the_one_ps
Z
ziyoujiyi 已提交
317 318 319
    config['debug_new_minimize'] = args.debug_new_minimize
    config['debug_new_pass'] = args.debug_new_pass
    config['applied_pass_name'] = args.applied_pass_name
Z
ziyoujiyi 已提交
320
    config['debug_the_one_ps'] = args.debug_the_one_ps
Z
ziyoujiyi 已提交
321 322 323 324 325 326 327 328 329
    yaml_helper.print_yaml(config)
    return config


def bf16_to_fp32(val):
    return np.float32(struct.unpack('<f', struct.pack('<I', val << 16))[0])


class DnnTrainer(object):
330

Z
ziyoujiyi 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350
    def __init__(self, config):
        self.metrics = {}
        self.config = config
        self.input_data = None
        self.reader = None
        self.exe = None
        self.train_result_dict = {}
        self.train_result_dict["speed"] = []
        self.model = None
        self.pure_bf16 = self.config['pure_bf16']
        self.role_maker = role_maker.PaddleCloudRoleMaker()

    def init_fleet_with_gloo(self, use_gloo=False):
        if use_gloo:
            os.environ["PADDLE_WITH_GLOO"] = "1"
            fleet.init(self.role_maker)
        else:
            fleet.init()

        if fleet.is_server():
351
            print("server: {} started".format(fleet.server_index()))
Z
ziyoujiyi 已提交
352
        else:
353
            print("worker: {} started".format(fleet.worker_index()))
Z
ziyoujiyi 已提交
354 355 356 357

    def run_minimize(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
358
        print("cpu_num: {}".format(os.getenv("CPU_NUM")))
Z
ziyoujiyi 已提交
359 360 361 362 363 364
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
365
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
366 367
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

368
        self.role_maker._generate_role()  # 必要
Z
ziyoujiyi 已提交
369
        if self.config['debug_new_minimize'] == 1:
370
            print("entering run_minimize -- new")
Z
ziyoujiyi 已提交
371 372 373 374 375 376
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)
        else:
377
            print("entering run_minimize -- old")
Z
ziyoujiyi 已提交
378 379 380 381 382
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  ## Fleet 对象
            fleet_obj.minimize(loss)

        if fleet.is_server():
Z
ziyoujiyi 已提交
383
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
384
                self.config['debug_new_minimize']) + '_server_main.prototxt'
385
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
386
        elif fleet.is_worker():
Z
ziyoujiyi 已提交
387
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
388
                self.config['debug_new_minimize']) + '_worker_main.prototxt'
389 390
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
Z
ziyoujiyi 已提交
391
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
392 393
                self.config['debug_new_minimize']
            ) + '_heter_worker_main.prototxt'
394
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
395 396 397 398 399 400 401 402 403

    def run_single_pass(self):
        self.init_fleet_with_gloo()
        self.model = get_model(config)
        input_data = self.model.create_feeds()
        metrics = self.model.net(input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(config)
        learning_rate = config.get("hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
404
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
405 406 407 408
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)
        startup_program = paddle.static.default_startup_program()
        inner_optimizer.minimize(loss, startup_program)
        if self.config['debug_new_pass'] == 1:
409
            print("entering run {} - new".format(
Z
ziyoujiyi 已提交
410
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
411 412 413 414
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
415
            ps_optimizer._set_origin_programs([loss])
Z
ziyoujiyi 已提交
416
            ps_optimizer._init_ps_pass_context(loss, startup_program)
Z
ziyoujiyi 已提交
417
            _main = ps_optimizer.pass_ctx._attrs['cloned_main']
Z
ziyoujiyi 已提交
418 419

            append_send_ops_pass = new_pass(config["applied_pass_name"],
Z
ziyoujiyi 已提交
420
                                            ps_optimizer.pass_ctx._attrs)
Z
ziyoujiyi 已提交
421 422
            append_send_ops_pass.apply([_main], [None], ps_optimizer.pass_ctx)
        else:
423
            print("entering run {} - old".format(
Z
ziyoujiyi 已提交
424
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
425 426 427 428 429 430 431 432 433 434 435 436
            from paddle.fluid.incubate.fleet.parameter_server.ir import public as public
            dist_strategy = get_distributed_strategy(user_defined_strategy)
            compiled_config = public.CompileTimeStrategy(
                loss.block.program, startup_program, dist_strategy,
                self.role_maker)

            _main = compiled_config.origin_main_program.clone()
            _startup = compiled_config.origin_startup_program.clone()
            from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker
            _main = worker.append_send_ops_pass(_main, compiled_config)

        if fleet.is_server():
437 438 439
            _main_file = ps_log_root_dir + sync_mode + "_" + str(
                config["applied_pass_name"]) + '_debug:_' + str(
                    self.config['debug_new_pass']) + '_server_main.prototxt'
440
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
441
        elif fleet.is_worker():
442 443 444
            _main_file = ps_log_root_dir + sync_mode + "_" + str(
                config["applied_pass_name"]) + '_debug:_' + str(
                    self.config['debug_new_pass']) + '_worker_main.prototxt'
445
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
446

Z
ziyoujiyi 已提交
447 448 449 450 451 452 453 454 455 456 457 458 459 460
    def run_the_one_ps(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
        sync_mode = self.config.get("runner.sync_mode")
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

        self.role_maker._generate_role()  # 必要
        if self.config['debug_the_one_ps'] == 1:
461
            print("entering run_the_one_ps -- new")
Z
ziyoujiyi 已提交
462 463 464 465 466 467 468 469 470 471 472 473 474

            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)

            from paddle.distributed.ps.the_one_ps import TheOnePSRuntime
            _runtime_handle = TheOnePSRuntime()  # ps 目录下重构版的 TheOnePSRuntime
            _runtime_handle._set_basic_info(ps_optimizer.pass_ctx._attrs)
            if fleet.is_worker():
                worker_desc = _runtime_handle.ps_desc_builder.build_worker_desc(
                )
475 476 477
                with open(
                        ps_log_root_dir + sync_mode + '_' +
                        'new_worker_ps_desc', 'w') as f:
Z
ziyoujiyi 已提交
478 479 480 481
                    f.write(worker_desc)
            if fleet.is_server():
                server_desc = _runtime_handle.ps_desc_builder.build_server_desc(
                )
482 483 484
                with open(
                        ps_log_root_dir + sync_mode + '_' +
                        'new_server_ps_desc', 'w') as f:
Z
ziyoujiyi 已提交
485 486 487 488 489
                    f.write(server_desc)

        else:
            pass
        '''          
490
            print("entering run_the_one_ps -- old")
Z
ziyoujiyi 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  
            fleet_obj.minimize(loss)  
            if fleet.is_worker():
                worker_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=False, is_sync=False)
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'worker_ps_desc', 'w') as f:
                    f.write(str(worker_desc) + str(server_desc))
            if fleet.is_server():
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'server_ps_desc', 'w') as f:
                    f.write(str(server_desc) + str(fleet_obj._runtime_handle._get_fs_client_desc().to_string()))
        '''
        if fleet.is_server():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_server_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif fleet.is_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_heter_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)

Z
ziyoujiyi 已提交
517 518 519 520

if __name__ == "__main__":
    paddle.enable_static()
    config = parse_args()
521
    print(">>>>>>>>>> python process started")
Z
ziyoujiyi 已提交
522 523 524 525 526 527
    os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
    benchmark_main = DnnTrainer(config)
    if config['run_single_pass'] == 1:
        benchmark_main.run_single_pass()
    elif config['run_minimize'] == 1:
        benchmark_main.run_minimize()
Z
ziyoujiyi 已提交
528 529
    elif config['run_the_one_ps'] == 1:
        benchmark_main.run_the_one_ps()