ps_dnn_trainer.py 20.2 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle.distributed.fleet.base.role_maker as role_maker
from paddle.distributed.ps.utils.ps_program_builder import *
import paddle.distributed.fleet as fleet
import argparse
import time
import sys
import yaml, six, copy
import paddle
import os
import warnings
import ast
import numpy as np
import struct
sys.path.append("..")
from ps_dnn_model import StaticModel

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))


def is_distributed_env():
    node_role = os.getenv("TRAINING_ROLE")
    logger.info("-- Role: {} --".format(node_role))
    if node_role is None:
        return False
    else:
        return True


class YamlHelper(object):
    def load_yaml(self, yaml_file, other_part=None):
        part_list = ["runner", "hyper_parameters"]
        if other_part:
            part_list += other_part
        running_config = self.get_all_inters_from_yaml(yaml_file, part_list)
        running_config = self.workspace_adapter(running_config)
        return running_config

    def print_yaml(self, config):
        print(self.pretty_print_envs(config))

    def parse_yaml(self, config):
        vs = [int(i) for i in yaml.__version__.split(".")]
        if vs[0] < 5:
            use_full_loader = False
        elif vs[0] > 5:
            use_full_loader = True
        else:
            if vs[1] >= 1:
                use_full_loader = True
            else:
                use_full_loader = False

        if os.path.isfile(config):
            if six.PY2:
                with open(config, 'r') as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
            else:
                with open(config, 'r', encoding="utf-8") as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
        else:
            raise ValueError("config {} can not be supported".format(config))

    def get_all_inters_from_yaml(self, file, filters):
        _envs = self.parse_yaml(file)
        all_flattens = {}

        def fatten_env_namespace(namespace_nests, local_envs):
            for k, v in local_envs.items():
                if isinstance(v, dict):
                    nests = copy.deepcopy(namespace_nests)
                    nests.append(k)
                    fatten_env_namespace(nests, v)
                else:
                    global_k = ".".join(namespace_nests + [k])
                    all_flattens[global_k] = v

        fatten_env_namespace([], _envs)
        ret = {}
        for k, v in all_flattens.items():
            for f in filters:
                if k.startswith(f):
                    ret[k] = v
        return ret

    def workspace_adapter(self, config):
        workspace = config.get("workspace")
        for k, v in config.items():
            if isinstance(v, str) and "{workspace}" in v:
                config[k] = v.replace("{workspace}", workspace)
        return config

    def pretty_print_envs(self, envs, header=None):
        spacing = 2
        max_k = 40
        max_v = 45

        for k, v in envs.items():
            max_k = max(max_k, len(k))

        h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(max_k, " " *
                                                              spacing, max_v)
        l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
        length = max_k + max_v + spacing

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = ""
        draws += border + "\n"

        if header:
            draws += h_format.format(header[0], header[1])
        else:
Z
ziyoujiyi 已提交
138
            draws += h_format.format("Ps Benchmark Envs", "Value")
Z
ziyoujiyi 已提交
139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

        draws += line + "\n"

        for k, v in sorted(envs.items()):
            if isinstance(v, str) and len(v) >= max_v:
                str_v = "... " + v[-41:]
            else:
                str_v = v

            draws += l_format.format(k, " " * spacing, str(str_v))

        draws += border

        _str = "\n{}\n".format(draws)
        return _str


def get_user_defined_strategy(config):
    if not is_distributed_env():
        logger.warn(
            "Not Find Distributed env, Change To local train mode. If you want train with fleet, please use [fleetrun] command."
        )
Z
ziyoujiyi 已提交
161
        #return None
Z
ziyoujiyi 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
    sync_mode = config.get("runner.sync_mode")
    assert sync_mode in ["async", "sync", "geo", "heter", "gpubox"]
    if sync_mode == "sync":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = False
    elif sync_mode == "async":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
    elif sync_mode == "geo":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": config.get("runner.geo_step")}
    elif sync_mode == "heter":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"heter_worker_device_guard": "gpu"}
178 179 180 181
        strategy.pipeline = True
        strategy.pipeline_configs = {
            "accumulate_steps": config.get('runner.micro_num')
        }
Z
ziyoujiyi 已提交
182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266
    elif sync_mode == "gpubox":
        print("sync_mode = {}".format(sync_mode))
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"use_ps_gpu": 1}

    strategy.trainer_desc_configs = {
        "dump_fields_path": config.get("runner.dump_fields_path", ""),
        "dump_fields": config.get("runner.dump_fields", []),
        "dump_param": config.get("runner.dump_param", []),
        "stat_var_names": config.get("stat_var_names", [])
    }
    print("strategy:", strategy.trainer_desc_configs)

    if config.get("runner.fs_client.uri") is not None:
        strategy.fs_client_param = {
            "uri": config.get("runner.fs_client.uri", ""),
            "user": config.get("runner.fs_client.user", ""),
            "passwd": config.get("runner.fs_client.passwd", ""),
            "hadoop_bin": config.get("runner.fs_client.hadoop_bin", "hadoop")
        }
    print("strategy:", strategy.fs_client_param)

    strategy.adam_d2sum = config.get("hyper_parameters.adam_d2sum", True)
    table_config = {}
    for x in config:
        if x.startswith("table_parameters"):
            table_name = x.split('.')[1]
            if table_name not in table_config:
                table_config[table_name] = {}
            table_config[table_name][x] = config[x]
    print("table_config:", table_config)
    strategy.sparse_table_configs = table_config
    print("strategy table config:", strategy.sparse_table_configs)
    a_sync_configs = strategy.a_sync_configs
    a_sync_configs["launch_barrier"] = False
    strategy.a_sync_configs = a_sync_configs
    print("launch_barrier: ", strategy.a_sync_configs["launch_barrier"])

    return strategy


def get_distributed_strategy(user_defined_strategy):
    from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

    k_steps = user_defined_strategy.a_sync_configs["k_steps"]
    strategy = None

    if not user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_sync_strategy()

    if user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_async_strategy()

    if user_defined_strategy.a_sync and k_steps > 0:
        strategy = StrategyFactory.create_geo_strategy(k_steps)

    if not strategy:
        raise ValueError("k_steps must be invalid value, please check")

    return strategy


def get_model(config):
    abs_dir = config['config_abs_dir']
    sys.path.append(abs_dir)
    static_model = StaticModel(config)
    return static_model


def parse_args():
    parser = argparse.ArgumentParser("PsTest train script")
    parser.add_argument(
        '-m', '--config_yaml', type=str, required=True, help='config file path')
    parser.add_argument(
        '-bf16',
        '--pure_bf16',
        type=ast.literal_eval,
        default=False,
        help="whether use bf16")

    parser.add_argument(
        '--run_minimize', type=int, default=0, help="test single pass")
    parser.add_argument(
        '--run_single_pass', type=int, default=0, help="test single pass")
Z
ziyoujiyi 已提交
267 268
    parser.add_argument(
        '--run_the_one_ps', type=int, default=0, help="test the_one_ps")
Z
ziyoujiyi 已提交
269 270 271 272 273 274
    parser.add_argument(
        '--debug_new_minimize', type=int, default=0, help="test single pass")
    parser.add_argument(
        '--debug_new_pass', type=int, default=0, help="test single pass")
    parser.add_argument(
        '--applied_pass_name', type=str, default="", help="test single pass")
Z
ziyoujiyi 已提交
275 276
    parser.add_argument(
        '--debug_the_one_ps', type=int, default=0, help="test the_one_ps")
Z
ziyoujiyi 已提交
277 278 279 280 281 282 283 284 285 286

    args = parser.parse_args()
    args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
    yaml_helper = YamlHelper()
    config = yaml_helper.load_yaml(args.config_yaml)
    config["yaml_path"] = args.config_yaml
    config["config_abs_dir"] = args.abs_dir
    config["pure_bf16"] = args.pure_bf16
    config['run_minimize'] = args.run_minimize
    config['run_single_pass'] = args.run_single_pass
Z
ziyoujiyi 已提交
287
    config['run_the_one_ps'] = args.run_the_one_ps
Z
ziyoujiyi 已提交
288 289 290
    config['debug_new_minimize'] = args.debug_new_minimize
    config['debug_new_pass'] = args.debug_new_pass
    config['applied_pass_name'] = args.applied_pass_name
Z
ziyoujiyi 已提交
291
    config['debug_the_one_ps'] = args.debug_the_one_ps
Z
ziyoujiyi 已提交
292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
    yaml_helper.print_yaml(config)
    return config


def bf16_to_fp32(val):
    return np.float32(struct.unpack('<f', struct.pack('<I', val << 16))[0])


class DnnTrainer(object):
    def __init__(self, config):
        self.metrics = {}
        self.config = config
        self.input_data = None
        self.reader = None
        self.exe = None
        self.train_result_dict = {}
        self.train_result_dict["speed"] = []
        self.model = None
        self.pure_bf16 = self.config['pure_bf16']
        self.role_maker = role_maker.PaddleCloudRoleMaker()

    def init_fleet_with_gloo(self, use_gloo=False):
        if use_gloo:
            os.environ["PADDLE_WITH_GLOO"] = "1"
            fleet.init(self.role_maker)
        else:
            fleet.init()

        if fleet.is_server():
            logger.info("server: {} started".format(fleet.server_index()))
        else:
            logger.info("worker: {} started".format(fleet.worker_index()))

    def run_minimize(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
        logger.info("cpu_num: {}".format(os.getenv("CPU_NUM")))
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
335
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
336 337
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

338
        self.role_maker._generate_role()  # 必要
Z
ziyoujiyi 已提交
339
        if self.config['debug_new_minimize'] == 1:
Z
ziyoujiyi 已提交
340
            logger.info("entering run_minimize -- new")
Z
ziyoujiyi 已提交
341 342 343 344 345 346
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)
        else:
Z
ziyoujiyi 已提交
347
            logger.info("entering run_minimize -- old")
Z
ziyoujiyi 已提交
348 349 350 351 352
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  ## Fleet 对象
            fleet_obj.minimize(loss)

        if fleet.is_server():
Z
ziyoujiyi 已提交
353
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
354
                self.config['debug_new_minimize']) + '_server_main.prototxt'
355
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
356
        elif fleet.is_worker():
Z
ziyoujiyi 已提交
357
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
358
                self.config['debug_new_minimize']) + '_worker_main.prototxt'
359 360
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
Z
ziyoujiyi 已提交
361
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
362 363 364
                self.config[
                    'debug_new_minimize']) + '_heter_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
365 366 367 368 369 370 371 372 373

    def run_single_pass(self):
        self.init_fleet_with_gloo()
        self.model = get_model(config)
        input_data = self.model.create_feeds()
        metrics = self.model.net(input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(config)
        learning_rate = config.get("hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
374
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
375 376 377 378
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)
        startup_program = paddle.static.default_startup_program()
        inner_optimizer.minimize(loss, startup_program)
        if self.config['debug_new_pass'] == 1:
Z
ziyoujiyi 已提交
379 380
            logger.info("entering run {} - new".format(
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
381 382 383 384
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
385
            ps_optimizer._set_origin_programs([loss])
Z
ziyoujiyi 已提交
386
            ps_optimizer._init_ps_pass_context(loss, startup_program)
Z
ziyoujiyi 已提交
387
            _main = ps_optimizer.pass_ctx._attrs['cloned_main']
Z
ziyoujiyi 已提交
388 389

            append_send_ops_pass = new_pass(config["applied_pass_name"],
Z
ziyoujiyi 已提交
390
                                            ps_optimizer.pass_ctx._attrs)
Z
ziyoujiyi 已提交
391 392
            append_send_ops_pass.apply([_main], [None], ps_optimizer.pass_ctx)
        else:
Z
ziyoujiyi 已提交
393 394
            logger.info("entering run {} - old".format(
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
395 396 397 398 399 400 401 402 403 404 405 406
            from paddle.fluid.incubate.fleet.parameter_server.ir import public as public
            dist_strategy = get_distributed_strategy(user_defined_strategy)
            compiled_config = public.CompileTimeStrategy(
                loss.block.program, startup_program, dist_strategy,
                self.role_maker)

            _main = compiled_config.origin_main_program.clone()
            _startup = compiled_config.origin_startup_program.clone()
            from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker
            _main = worker.append_send_ops_pass(_main, compiled_config)

        if fleet.is_server():
Z
ziyoujiyi 已提交
407
            _main_file = ps_log_root_dir + sync_mode + "_" + str(config[
Z
ziyoujiyi 已提交
408
                "applied_pass_name"]) + '_debug:_' + str(self.config[
Z
ziyoujiyi 已提交
409
                    'debug_new_pass']) + '_server_main.prototxt'
410
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
411
        elif fleet.is_worker():
Z
ziyoujiyi 已提交
412
            _main_file = ps_log_root_dir + sync_mode + "_" + str(config[
Z
ziyoujiyi 已提交
413
                "applied_pass_name"]) + '_debug:_' + str(self.config[
Z
ziyoujiyi 已提交
414
                    'debug_new_pass']) + '_worker_main.prototxt'
415
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
416

Z
ziyoujiyi 已提交
417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
    def run_the_one_ps(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
        sync_mode = self.config.get("runner.sync_mode")
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

        self.role_maker._generate_role()  # 必要
        if self.config['debug_the_one_ps'] == 1:
            logger.info("entering run_the_one_ps -- new")

            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)

            from paddle.distributed.ps.the_one_ps import TheOnePSRuntime
            _runtime_handle = TheOnePSRuntime()  # ps 目录下重构版的 TheOnePSRuntime
            _runtime_handle._set_basic_info(ps_optimizer.pass_ctx._attrs)
            if fleet.is_worker():
                worker_desc = _runtime_handle.ps_desc_builder.build_worker_desc(
                )
                with open(ps_log_root_dir + sync_mode + '_' +
                          'new_worker_ps_desc', 'w') as f:
                    f.write(worker_desc)
            if fleet.is_server():
                server_desc = _runtime_handle.ps_desc_builder.build_server_desc(
                )
                with open(ps_log_root_dir + sync_mode + '_' +
                          'new_server_ps_desc', 'w') as f:
                    f.write(server_desc)

        else:
            pass
        '''          
            logger.info("entering run_the_one_ps -- old")
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  
            fleet_obj.minimize(loss)  
            if fleet.is_worker():
                worker_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=False, is_sync=False)
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'worker_ps_desc', 'w') as f:
                    f.write(str(worker_desc) + str(server_desc))
            if fleet.is_server():
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'server_ps_desc', 'w') as f:
                    f.write(str(server_desc) + str(fleet_obj._runtime_handle._get_fs_client_desc().to_string()))
        '''
        if fleet.is_server():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_server_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif fleet.is_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_heter_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)

Z
ziyoujiyi 已提交
485 486 487 488

if __name__ == "__main__":
    paddle.enable_static()
    config = parse_args()
489
    logger.info(">>>>>>>>>> python process started")
Z
ziyoujiyi 已提交
490 491 492 493 494 495
    os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
    benchmark_main = DnnTrainer(config)
    if config['run_single_pass'] == 1:
        benchmark_main.run_single_pass()
    elif config['run_minimize'] == 1:
        benchmark_main.run_minimize()
Z
ziyoujiyi 已提交
496 497
    elif config['run_the_one_ps'] == 1:
        benchmark_main.run_the_one_ps()