ps_dnn_trainer.py 21.1 KB
Newer Older
Z
ziyoujiyi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function
import paddle.distributed.fleet.base.role_maker as role_maker
from paddle.distributed.ps.utils.ps_program_builder import *
import paddle.distributed.fleet as fleet
import argparse
import time
import sys
import yaml, six, copy
import paddle
import os
import warnings
import ast
import numpy as np
import struct
29

Z
ziyoujiyi 已提交
30 31 32 33 34 35 36 37 38
sys.path.append("..")
from ps_dnn_model import StaticModel

__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))


def is_distributed_env():
    node_role = os.getenv("TRAINING_ROLE")
39
    print("-- Role: {} --".format(node_role))
Z
ziyoujiyi 已提交
40 41 42 43 44 45 46
    if node_role is None:
        return False
    else:
        return True


class YamlHelper(object):
47

Z
ziyoujiyi 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
    def load_yaml(self, yaml_file, other_part=None):
        part_list = ["runner", "hyper_parameters"]
        if other_part:
            part_list += other_part
        running_config = self.get_all_inters_from_yaml(yaml_file, part_list)
        running_config = self.workspace_adapter(running_config)
        return running_config

    def print_yaml(self, config):
        print(self.pretty_print_envs(config))

    def parse_yaml(self, config):
        vs = [int(i) for i in yaml.__version__.split(".")]
        if vs[0] < 5:
            use_full_loader = False
        elif vs[0] > 5:
            use_full_loader = True
        else:
            if vs[1] >= 1:
                use_full_loader = True
            else:
                use_full_loader = False

        if os.path.isfile(config):
            if six.PY2:
                with open(config, 'r') as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
            else:
                with open(config, 'r', encoding="utf-8") as rb:
                    if use_full_loader:
                        _config = yaml.load(rb.read(), Loader=yaml.FullLoader)
                    else:
                        _config = yaml.load(rb.read())
                    return _config
        else:
            raise ValueError("config {} can not be supported".format(config))

    def get_all_inters_from_yaml(self, file, filters):
        _envs = self.parse_yaml(file)
        all_flattens = {}

        def fatten_env_namespace(namespace_nests, local_envs):
            for k, v in local_envs.items():
                if isinstance(v, dict):
                    nests = copy.deepcopy(namespace_nests)
                    nests.append(k)
                    fatten_env_namespace(nests, v)
                else:
                    global_k = ".".join(namespace_nests + [k])
                    all_flattens[global_k] = v

        fatten_env_namespace([], _envs)
        ret = {}
        for k, v in all_flattens.items():
            for f in filters:
                if k.startswith(f):
                    ret[k] = v
        return ret

    def workspace_adapter(self, config):
        workspace = config.get("workspace")
        for k, v in config.items():
            if isinstance(v, str) and "{workspace}" in v:
                config[k] = v.replace("{workspace}", workspace)
        return config

    def pretty_print_envs(self, envs, header=None):
        spacing = 2
        max_k = 40
        max_v = 45

        for k, v in envs.items():
            max_k = max(max_k, len(k))

126 127
        h_format = "    " + "|{{:>{}s}}{}{{:^{}s}}|\n".format(
            max_k, " " * spacing, max_v)
Z
ziyoujiyi 已提交
128 129 130 131 132 133 134 135 136 137 138 139
        l_format = "    " + "|{{:>{}s}}{{}}{{:^{}s}}|\n".format(max_k, max_v)
        length = max_k + max_v + spacing

        border = "    +" + "".join(["="] * length) + "+"
        line = "    +" + "".join(["-"] * length) + "+"

        draws = ""
        draws += border + "\n"

        if header:
            draws += h_format.format(header[0], header[1])
        else:
Z
ziyoujiyi 已提交
140
            draws += h_format.format("Ps Benchmark Envs", "Value")
Z
ziyoujiyi 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162

        draws += line + "\n"

        for k, v in sorted(envs.items()):
            if isinstance(v, str) and len(v) >= max_v:
                str_v = "... " + v[-41:]
            else:
                str_v = v

            draws += l_format.format(k, " " * spacing, str(str_v))

        draws += border

        _str = "\n{}\n".format(draws)
        return _str


def get_user_defined_strategy(config):
    if not is_distributed_env():
        logger.warn(
            "Not Find Distributed env, Change To local train mode. If you want train with fleet, please use [fleetrun] command."
        )
Z
ziyoujiyi 已提交
163
        #return None
Z
ziyoujiyi 已提交
164 165 166 167 168 169 170 171
    sync_mode = config.get("runner.sync_mode")
    assert sync_mode in ["async", "sync", "geo", "heter", "gpubox"]
    if sync_mode == "sync":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = False
    elif sync_mode == "async":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
172 173 174 175 176 177 178 179
        strategy.is_fl_ps_mode = True if config.get(
            "runner.is_fl_ps_mode") == 1 else False
        if strategy.is_fl_ps_mode == True:
            strategy.pipeline = False
            micro_num = 1
            strategy.pipeline_configs = {
                "accumulate_steps": micro_num
            }  ## num_microbatches
Z
ziyoujiyi 已提交
180 181 182 183 184 185 186 187
    elif sync_mode == "geo":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"k_steps": config.get("runner.geo_step")}
    elif sync_mode == "heter":
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"heter_worker_device_guard": "gpu"}
188 189 190 191
        strategy.pipeline = True
        strategy.pipeline_configs = {
            "accumulate_steps": config.get('runner.micro_num')
        }
Z
ziyoujiyi 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
    elif sync_mode == "gpubox":
        print("sync_mode = {}".format(sync_mode))
        strategy = paddle.distributed.fleet.DistributedStrategy()
        strategy.a_sync = True
        strategy.a_sync_configs = {"use_ps_gpu": 1}

    strategy.trainer_desc_configs = {
        "dump_fields_path": config.get("runner.dump_fields_path", ""),
        "dump_fields": config.get("runner.dump_fields", []),
        "dump_param": config.get("runner.dump_param", []),
        "stat_var_names": config.get("stat_var_names", [])
    }
    print("strategy:", strategy.trainer_desc_configs)

    if config.get("runner.fs_client.uri") is not None:
        strategy.fs_client_param = {
            "uri": config.get("runner.fs_client.uri", ""),
            "user": config.get("runner.fs_client.user", ""),
            "passwd": config.get("runner.fs_client.passwd", ""),
            "hadoop_bin": config.get("runner.fs_client.hadoop_bin", "hadoop")
        }
    print("strategy:", strategy.fs_client_param)

    strategy.adam_d2sum = config.get("hyper_parameters.adam_d2sum", True)
    table_config = {}
    for x in config:
        if x.startswith("table_parameters"):
            table_name = x.split('.')[1]
            if table_name not in table_config:
                table_config[table_name] = {}
            table_config[table_name][x] = config[x]
    print("table_config:", table_config)
    strategy.sparse_table_configs = table_config
    print("strategy table config:", strategy.sparse_table_configs)
    a_sync_configs = strategy.a_sync_configs
    a_sync_configs["launch_barrier"] = False
228
    # a_sync_configs["launch_barrier"] = True
Z
ziyoujiyi 已提交
229 230 231 232 233 234
    strategy.a_sync_configs = a_sync_configs
    print("launch_barrier: ", strategy.a_sync_configs["launch_barrier"])

    return strategy


235
def get_distributed_strategy(user_defined_strategy):  # pslib
Z
ziyoujiyi 已提交
236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
    from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory

    k_steps = user_defined_strategy.a_sync_configs["k_steps"]
    strategy = None

    if not user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_sync_strategy()

    if user_defined_strategy.a_sync and k_steps == 0:
        strategy = StrategyFactory.create_async_strategy()

    if user_defined_strategy.a_sync and k_steps > 0:
        strategy = StrategyFactory.create_geo_strategy(k_steps)

    if not strategy:
        raise ValueError("k_steps must be invalid value, please check")

    return strategy


def get_model(config):
    abs_dir = config['config_abs_dir']
    sys.path.append(abs_dir)
    static_model = StaticModel(config)
    return static_model


def parse_args():
    parser = argparse.ArgumentParser("PsTest train script")
265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
    parser.add_argument('-m',
                        '--config_yaml',
                        type=str,
                        required=True,
                        help='config file path')
    parser.add_argument('-bf16',
                        '--pure_bf16',
                        type=ast.literal_eval,
                        default=False,
                        help="whether use bf16")

    parser.add_argument('--run_minimize',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--run_single_pass',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--run_the_one_ps',
                        type=int,
                        default=0,
                        help="test the_one_ps")
    parser.add_argument('--debug_new_minimize',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--debug_new_pass',
                        type=int,
                        default=0,
                        help="test single pass")
    parser.add_argument('--applied_pass_name',
                        type=str,
                        default="",
                        help="test single pass")
    parser.add_argument('--debug_the_one_ps',
                        type=int,
                        default=0,
                        help="test the_one_ps")
Z
ziyoujiyi 已提交
304 305 306 307 308 309 310 311 312 313

    args = parser.parse_args()
    args.abs_dir = os.path.dirname(os.path.abspath(args.config_yaml))
    yaml_helper = YamlHelper()
    config = yaml_helper.load_yaml(args.config_yaml)
    config["yaml_path"] = args.config_yaml
    config["config_abs_dir"] = args.abs_dir
    config["pure_bf16"] = args.pure_bf16
    config['run_minimize'] = args.run_minimize
    config['run_single_pass'] = args.run_single_pass
Z
ziyoujiyi 已提交
314
    config['run_the_one_ps'] = args.run_the_one_ps
Z
ziyoujiyi 已提交
315 316 317
    config['debug_new_minimize'] = args.debug_new_minimize
    config['debug_new_pass'] = args.debug_new_pass
    config['applied_pass_name'] = args.applied_pass_name
Z
ziyoujiyi 已提交
318
    config['debug_the_one_ps'] = args.debug_the_one_ps
Z
ziyoujiyi 已提交
319 320 321 322 323 324 325 326 327
    yaml_helper.print_yaml(config)
    return config


def bf16_to_fp32(val):
    return np.float32(struct.unpack('<f', struct.pack('<I', val << 16))[0])


class DnnTrainer(object):
328

Z
ziyoujiyi 已提交
329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
    def __init__(self, config):
        self.metrics = {}
        self.config = config
        self.input_data = None
        self.reader = None
        self.exe = None
        self.train_result_dict = {}
        self.train_result_dict["speed"] = []
        self.model = None
        self.pure_bf16 = self.config['pure_bf16']
        self.role_maker = role_maker.PaddleCloudRoleMaker()

    def init_fleet_with_gloo(self, use_gloo=False):
        if use_gloo:
            os.environ["PADDLE_WITH_GLOO"] = "1"
            fleet.init(self.role_maker)
        else:
            fleet.init()

        if fleet.is_server():
349
            print("server: {} started".format(fleet.server_index()))
Z
ziyoujiyi 已提交
350
        else:
351
            print("worker: {} started".format(fleet.worker_index()))
Z
ziyoujiyi 已提交
352 353 354 355

    def run_minimize(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
356
        print("cpu_num: {}".format(os.getenv("CPU_NUM")))
Z
ziyoujiyi 已提交
357 358 359 360 361 362
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
363
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
364 365
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

366
        self.role_maker._generate_role()  # 必要
Z
ziyoujiyi 已提交
367
        if self.config['debug_new_minimize'] == 1:
368
            print("entering run_minimize -- new")
Z
ziyoujiyi 已提交
369 370 371 372 373 374
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)
        else:
375
            print("entering run_minimize -- old")
Z
ziyoujiyi 已提交
376 377 378 379 380
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  ## Fleet 对象
            fleet_obj.minimize(loss)

        if fleet.is_server():
Z
ziyoujiyi 已提交
381
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
382
                self.config['debug_new_minimize']) + '_server_main.prototxt'
383
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
384
        elif fleet.is_worker():
Z
ziyoujiyi 已提交
385
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
Z
ziyoujiyi 已提交
386
                self.config['debug_new_minimize']) + '_worker_main.prototxt'
387 388
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
Z
ziyoujiyi 已提交
389
            _main_file = ps_log_root_dir + sync_mode + '_run_minimize' + '_debug:_' + str(
390 391
                self.config['debug_new_minimize']
            ) + '_heter_worker_main.prototxt'
392
            debug_program(_main_file, loss.block.program)
Z
ziyoujiyi 已提交
393 394 395 396 397 398 399 400 401

    def run_single_pass(self):
        self.init_fleet_with_gloo()
        self.model = get_model(config)
        input_data = self.model.create_feeds()
        metrics = self.model.net(input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(config)
        learning_rate = config.get("hyper_parameters.optimizer.learning_rate")
Z
ziyoujiyi 已提交
402
        sync_mode = self.config.get("runner.sync_mode")
Z
ziyoujiyi 已提交
403 404 405 406
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)
        startup_program = paddle.static.default_startup_program()
        inner_optimizer.minimize(loss, startup_program)
        if self.config['debug_new_pass'] == 1:
407
            print("entering run {} - new".format(
Z
ziyoujiyi 已提交
408
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
409 410 411 412
            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
413
            ps_optimizer._set_origin_programs([loss])
Z
ziyoujiyi 已提交
414
            ps_optimizer._init_ps_pass_context(loss, startup_program)
Z
ziyoujiyi 已提交
415
            _main = ps_optimizer.pass_ctx._attrs['cloned_main']
Z
ziyoujiyi 已提交
416 417

            append_send_ops_pass = new_pass(config["applied_pass_name"],
Z
ziyoujiyi 已提交
418
                                            ps_optimizer.pass_ctx._attrs)
Z
ziyoujiyi 已提交
419 420
            append_send_ops_pass.apply([_main], [None], ps_optimizer.pass_ctx)
        else:
421
            print("entering run {} - old".format(
Z
ziyoujiyi 已提交
422
                str(config["applied_pass_name"])))
Z
ziyoujiyi 已提交
423 424 425 426 427 428 429 430 431 432 433 434
            from paddle.fluid.incubate.fleet.parameter_server.ir import public as public
            dist_strategy = get_distributed_strategy(user_defined_strategy)
            compiled_config = public.CompileTimeStrategy(
                loss.block.program, startup_program, dist_strategy,
                self.role_maker)

            _main = compiled_config.origin_main_program.clone()
            _startup = compiled_config.origin_startup_program.clone()
            from paddle.fluid.incubate.fleet.parameter_server.ir import trainer_pass as worker
            _main = worker.append_send_ops_pass(_main, compiled_config)

        if fleet.is_server():
435 436 437
            _main_file = ps_log_root_dir + sync_mode + "_" + str(
                config["applied_pass_name"]) + '_debug:_' + str(
                    self.config['debug_new_pass']) + '_server_main.prototxt'
438
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
439
        elif fleet.is_worker():
440 441 442
            _main_file = ps_log_root_dir + sync_mode + "_" + str(
                config["applied_pass_name"]) + '_debug:_' + str(
                    self.config['debug_new_pass']) + '_worker_main.prototxt'
443
            debug_program(_main_file, _main)
Z
ziyoujiyi 已提交
444

Z
ziyoujiyi 已提交
445 446 447 448 449 450 451 452 453 454 455 456 457 458
    def run_the_one_ps(self):
        self.init_fleet_with_gloo()
        self.model = get_model(self.config)
        self.input_data = self.model.create_feeds()
        self.metrics = self.model.net(self.input_data)
        loss = self.model._cost
        user_defined_strategy = get_user_defined_strategy(self.config)
        learning_rate = self.config.get(
            "hyper_parameters.optimizer.learning_rate")
        sync_mode = self.config.get("runner.sync_mode")
        inner_optimizer = paddle.optimizer.Adam(learning_rate, lazy_mode=True)

        self.role_maker._generate_role()  # 必要
        if self.config['debug_the_one_ps'] == 1:
459
            print("entering run_the_one_ps -- new")
Z
ziyoujiyi 已提交
460 461 462 463 464 465 466 467 468 469 470 471 472

            from paddle.distributed.fleet.meta_optimizers.ps_optimizer import ParameterServerOptimizer
            ps_optimizer = ParameterServerOptimizer(inner_optimizer)
            ps_optimizer._set_basic_info(loss, self.role_maker, inner_optimizer,
                                         user_defined_strategy)
            ps_optimizer.minimize_impl(loss)

            from paddle.distributed.ps.the_one_ps import TheOnePSRuntime
            _runtime_handle = TheOnePSRuntime()  # ps 目录下重构版的 TheOnePSRuntime
            _runtime_handle._set_basic_info(ps_optimizer.pass_ctx._attrs)
            if fleet.is_worker():
                worker_desc = _runtime_handle.ps_desc_builder.build_worker_desc(
                )
473 474 475
                with open(
                        ps_log_root_dir + sync_mode + '_' +
                        'new_worker_ps_desc', 'w') as f:
Z
ziyoujiyi 已提交
476 477 478 479
                    f.write(worker_desc)
            if fleet.is_server():
                server_desc = _runtime_handle.ps_desc_builder.build_server_desc(
                )
480 481 482
                with open(
                        ps_log_root_dir + sync_mode + '_' +
                        'new_server_ps_desc', 'w') as f:
Z
ziyoujiyi 已提交
483 484 485 486 487
                    f.write(server_desc)

        else:
            pass
        '''          
488
            print("entering run_the_one_ps -- old")
Z
ziyoujiyi 已提交
489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514
            fleet_obj = fleet.distributed_optimizer(
                inner_optimizer, user_defined_strategy)  
            fleet_obj.minimize(loss)  
            if fleet.is_worker():
                worker_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=False, is_sync=False)
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'worker_ps_desc', 'w') as f:
                    f.write(str(worker_desc) + str(server_desc))
            if fleet.is_server():
                server_desc = fleet_obj._runtime_handle._get_fleet_proto(is_server=True, is_sync=False)
                with open(ps_log_root_dir + sync_mode + '_' + 'server_ps_desc', 'w') as f:
                    f.write(str(server_desc) + str(fleet_obj._runtime_handle._get_fs_client_desc().to_string()))
        '''
        if fleet.is_server():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_server_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif fleet.is_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)
        elif self.role_maker._is_heter_worker():
            _main_file = ps_log_root_dir + sync_mode + '_run_the_one_ps' + '_debug:_' + str(
                self.config['debug_the_one_ps']) + '_heter_worker_main.prototxt'
            debug_program(_main_file, loss.block.program)

Z
ziyoujiyi 已提交
515 516 517 518

if __name__ == "__main__":
    paddle.enable_static()
    config = parse_args()
519
    print(">>>>>>>>>> python process started")
Z
ziyoujiyi 已提交
520 521 522 523 524 525
    os.environ["CPU_NUM"] = str(config.get("runner.thread_num"))
    benchmark_main = DnnTrainer(config)
    if config['run_single_pass'] == 1:
        benchmark_main.run_single_pass()
    elif config['run_minimize'] == 1:
        benchmark_main.run_minimize()
Z
ziyoujiyi 已提交
526 527
    elif config['run_the_one_ps'] == 1:
        benchmark_main.run_the_one_ps()