test_elementwise_mul_op.py 10.0 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16

17
import unittest
18

19
import numpy as np
20 21
import paddle
import paddle.fluid as fluid
22
import paddle.fluid.core as core
23
from paddle.fluid import Program, compiler, program_guard
24
from paddle.fluid.op import Operator
25 26

from op_test import OpTest, skip_check_grad_ci
27 28


G
gongweibao 已提交
29
class ElementwiseMulOp(OpTest):
30 31 32
    def init_kernel_type(self):
        self.use_mkldnn = False

33 34
    def setUp(self):
        self.op_type = "elementwise_mul"
35
        self.dtype = np.float64
36 37 38 39 40 41
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

42
        self.inputs = {
43 44
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
45
        }
46 47
        self.outputs = {'Out': self.out}
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
48 49

    def test_check_output(self):
50 51
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_output(check_dygraph=(self.use_mkldnn == False))
52 53

    def test_check_grad_normal(self):
54 55 56
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_grad(
            ['X', 'Y'], 'Out', check_dygraph=(self.use_mkldnn == False))
57 58

    def test_check_grad_ingore_x(self):
59 60 61 62 63 64
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            check_dygraph=(self.use_mkldnn == False))
65 66

    def test_check_grad_ingore_y(self):
67 68 69 70 71 72
        # TODO(wangzhongpu): support mkldnn op in dygraph mode
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            check_dygraph=(self.use_mkldnn == False))
73

74 75 76 77 78 79 80 81 82 83 84
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def init_dtype(self):
        pass

    def init_axis(self):
        pass

85

86 87
@skip_check_grad_ci(
    reason="[skip shape check] Use y_shape(1) to test broadcast.")
88 89 90 91
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
92 93
            'X': np.random.rand(10, 3, 4).astype(np.float64),
            'Y': np.random.rand(1).astype(np.float64)
94 95
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
96
        self.init_kernel_type()
97 98


G
gongweibao 已提交
99
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
100 101 102
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
103 104
            'X': np.random.random((100, )).astype("float64"),
            'Y': np.random.random((100, )).astype("float64")
105 106
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}
107
        self.init_kernel_type()
108 109


G
gongweibao 已提交
110
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
111
    def init_input_output(self):
112 113 114
        self.x = np.random.rand(100, 2, 3).astype(self.dtype)
        self.y = np.random.rand(100).astype(self.dtype)
        self.out = self.x * self.y.reshape(100, 1, 1)
115

116 117
    def init_axis(self):
        self.axis = 0
118 119


G
gongweibao 已提交
120
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
121 122 123
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
124 125
            'X': np.random.rand(2, 100, 3).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
126 127 128 129
        }

        self.attrs = {'axis': 1}
        self.outputs = {
130
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 100, 1)
131
        }
132
        self.init_kernel_type()
133 134


G
gongweibao 已提交
135
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
136 137 138
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
139 140
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(100).astype(np.float64)
141 142 143
        }

        self.outputs = {
144
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 100)
145
        }
146
        self.init_kernel_type()
147 148


G
gongweibao 已提交
149
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
150 151 152
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
153 154
            'X': np.random.rand(2, 10, 12, 3).astype(np.float64),
            'Y': np.random.rand(10, 12).astype(np.float64)
155 156 157 158
        }

        self.attrs = {'axis': 1}
        self.outputs = {
159
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 10, 12, 1)
160
        }
161
        self.init_kernel_type()
162 163


164 165 166 167
class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
168 169
            'X': np.random.rand(10, 2, 11).astype(np.float64),
            'Y': np.random.rand(10, 1, 11).astype(np.float64)
170 171
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
172
        self.init_kernel_type()
173 174 175 176 177 178


class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
179 180
            'X': np.random.rand(10, 4, 2, 3).astype(np.float64),
            'Y': np.random.rand(10, 4, 1, 3).astype(np.float64)
181 182
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
183
        self.init_kernel_type()
184 185


186 187
@unittest.skipIf(not core.is_compiled_with_cuda(),
                 "core is not compiled with CUDA")
W
Wu Yi 已提交
188 189 190 191 192
class TestElementwiseMulOpFp16(ElementwiseMulOp):
    def init_dtype(self):
        self.dtype = np.float16


193 194 195 196
class TestElementwiseMulOp_commonuse_1(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
197 198
            'X': np.random.rand(2, 3, 100).astype(np.float64),
            'Y': np.random.rand(1, 1, 100).astype(np.float64)
199 200
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
201
        self.init_kernel_type()
202 203 204 205 206 207


class TestElementwiseMulOp_commonuse_2(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
208 209
            'X': np.random.rand(30, 3, 1, 5).astype(np.float64),
            'Y': np.random.rand(30, 1, 4, 1).astype(np.float64)
210 211
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}
212
        self.init_kernel_type()
213 214 215 216 217 218


class TestElementwiseMulOp_xsize_lessthan_ysize(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
219 220
            'X': np.random.rand(10, 10).astype(np.float64),
            'Y': np.random.rand(2, 2, 10, 10).astype(np.float64)
221 222 223 224 225
        }

        self.attrs = {'axis': 2}

        self.outputs = {
226
            'Out': self.inputs['X'].reshape(1, 1, 10, 10) * self.inputs['Y']
227
        }
228
        self.init_kernel_type()
229 230


231
class TestElementwiseMulOpError(unittest.TestCase):
232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
    def test_errors(self):
        with program_guard(Program(), Program()):
            # the input of elementwise_mul must be Variable.
            x1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            y1 = fluid.create_lod_tensor(
                np.array([-1, 3, 5, 5]), [[1, 1, 1, 1]], fluid.CPUPlace())
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x1, y1)

            # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64
            # float16 only can be set on GPU place
            x2 = fluid.layers.data(name='x2', shape=[3, 4, 5, 6], dtype="uint8")
            y2 = fluid.layers.data(name='y2', shape=[3, 4, 5, 6], dtype="uint8")
            self.assertRaises(TypeError, fluid.layers.elementwise_mul, x2, y2)


248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
class TestComplexElementwiseMulOp(OpTest):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.init_base_dtype()
        self.init_input_output()
        self.init_grad_input_output()

        self.inputs = {
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
        }
        self.attrs = {'axis': -1, 'use_mkldnn': False}
        self.outputs = {'Out': self.out}

    def init_base_dtype(self):
        self.dtype = np.float64

    def init_input_output(self):
        self.x = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.y = np.random.random(
            (2, 3, 4, 5)).astype(self.dtype) + 1J * np.random.random(
                (2, 3, 4, 5)).astype(self.dtype)
        self.out = self.x * self.y

    def init_grad_input_output(self):
        self.grad_out = np.ones((2, 3, 4, 5), self.dtype) + 1J * np.ones(
            (2, 3, 4, 5), self.dtype)
        self.grad_x = self.grad_out * np.conj(self.y)
        self.grad_y = self.grad_out * np.conj(self.x)

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
        self.check_grad(
            ['X', 'Y'],
            'Out',
            user_defined_grads=[self.grad_x, self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_x(self):
        self.check_grad(
            ['Y'],
            'Out',
            no_grad_set=set("X"),
            user_defined_grads=[self.grad_y],
            user_defined_grad_outputs=[self.grad_out])

    def test_check_grad_ingore_y(self):
        self.check_grad(
            ['X'],
            'Out',
            no_grad_set=set('Y'),
            user_defined_grads=[self.grad_x],
            user_defined_grad_outputs=[self.grad_out])


307
if __name__ == '__main__':
308
    paddle.enable_static()
309
    unittest.main()