“b95b80bc766913199b70b30d3282c5e3b8a3402d”上不存在“paddle/fluid/git@gitcode.net:Crayonxin2000/Paddle.git”
test_elementwise_mul_op.py 3.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17
import unittest
import numpy as np
18
from op_test import OpTest
19 20


G
gongweibao 已提交
21
class ElementwiseMulOp(OpTest):
22 23 24
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
25 26
            'X': np.random.uniform(0.1, 1, [13, 17]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float64")
27 28 29 30 31 32 33
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
34
        self.check_grad(['X', 'Y'], 'Out')
35 36

    def test_check_grad_ingore_x(self):
37
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
38 39

    def test_check_grad_ingore_y(self):
40
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
41 42


43 44 45 46 47 48 49 50 51 52
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4).astype(np.float32),
            'Y': np.random.rand(1).astype(np.float32)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}


G
gongweibao 已提交
53
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
54 55 56
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
57 58
            'X': np.random.random((32, )).astype("float64"),
            'Y': np.random.random((32, )).astype("float64")
59 60 61 62
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}


G
gongweibao 已提交
63
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
64 65 66
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
67 68
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(2).astype(np.float64)
69 70 71 72 73 74 75 76
        }

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
        }


G
gongweibao 已提交
77
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
78 79 80
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
81 82
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(3).astype(np.float64)
83 84 85 86 87 88 89 90
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
        }


G
gongweibao 已提交
91
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
92 93 94
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
95 96
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(4).astype(np.float64)
97 98 99 100 101 102 103
        }

        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
        }


G
gongweibao 已提交
104
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
105 106 107
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
108 109
            'X': np.random.rand(2, 3, 4, 5).astype(np.float64),
            'Y': np.random.rand(3, 4).astype(np.float64)
110 111 112 113 114 115 116 117 118 119
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
        }


if __name__ == '__main__':
    unittest.main()