test_elementwise_mul_op.py 3.7 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17
import unittest
import numpy as np
18
from op_test import OpTest
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21 22


G
gongweibao 已提交
23
class ElementwiseMulOp(OpTest):
24 25 26
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
27 28
            'X': np.random.uniform(0.1, 1, [13, 17]).astype("float64"),
            'Y': np.random.uniform(0.1, 1, [13, 17]).astype("float64")
29 30 31 32 33 34 35
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
36
        self.check_grad(['X', 'Y'], 'Out')
37 38

    def test_check_grad_ingore_x(self):
39
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
40 41

    def test_check_grad_ingore_y(self):
42
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
43 44


45 46 47 48 49 50 51 52 53 54
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4).astype(np.float32),
            'Y': np.random.rand(1).astype(np.float32)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}


G
gongweibao 已提交
55
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
56 57 58
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
59 60
            'X': np.random.random((32, )).astype("float64"),
            'Y': np.random.random((32, )).astype("float64")
61 62 63 64
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}


G
gongweibao 已提交
65
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
66 67 68
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
69 70
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(2).astype(np.float64)
71 72 73 74 75 76 77 78
        }

        self.attrs = {'axis': 0}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(2, 1, 1)
        }


G
gongweibao 已提交
79
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
80 81 82
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
83 84
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(3).astype(np.float64)
85 86 87 88 89 90 91 92
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
        }


G
gongweibao 已提交
93
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
94 95 96
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
97 98
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(4).astype(np.float64)
99 100 101 102 103 104 105
        }

        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
        }


G
gongweibao 已提交
106
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
107 108 109
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
110 111
            'X': np.random.rand(2, 3, 4, 5).astype(np.float64),
            'Y': np.random.rand(3, 4).astype(np.float64)
112 113 114 115 116 117 118 119 120 121
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
        }


if __name__ == '__main__':
    unittest.main()