test_elementwise_mul_op.py 5.0 KB
Newer Older
1
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
D
dzhwinter 已提交
2
#
3 4 5
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
D
dzhwinter 已提交
6 7 8
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
9 10 11 12 13
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14 15

from __future__ import print_function
16 17
import unittest
import numpy as np
18
from op_test import OpTest
19 20
import paddle.fluid.core as core
from paddle.fluid.op import Operator
21 22


G
gongweibao 已提交
23
class ElementwiseMulOp(OpTest):
24 25 26
    def init_kernel_type(self):
        self.use_mkldnn = False

27 28
    def setUp(self):
        self.op_type = "elementwise_mul"
29 30 31 32 33 34 35
        self.dtype = np.float32
        self.axis = -1
        self.init_dtype()
        self.init_input_output()
        self.init_kernel_type()
        self.init_axis()

36
        self.inputs = {
37 38
            'X': OpTest.np_dtype_to_fluid_dtype(self.x),
            'Y': OpTest.np_dtype_to_fluid_dtype(self.y)
39
        }
40 41
        self.outputs = {'Out': self.out}
        self.attrs = {'axis': self.axis, 'use_mkldnn': self.use_mkldnn}
42 43 44 45 46

    def test_check_output(self):
        self.check_output()

    def test_check_grad_normal(self):
47
        self.check_grad(['X', 'Y'], 'Out')
48 49

    def test_check_grad_ingore_x(self):
50
        self.check_grad(['Y'], 'Out', no_grad_set=set("X"))
51 52

    def test_check_grad_ingore_y(self):
53
        self.check_grad(['X'], 'Out', no_grad_set=set('Y'))
54

55 56 57 58 59 60 61 62 63 64 65
    def init_input_output(self):
        self.x = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.y = np.random.uniform(0.1, 1, [13, 17]).astype(self.dtype)
        self.out = np.multiply(self.x, self.y)

    def init_dtype(self):
        pass

    def init_axis(self):
        pass

66

67 68 69 70 71 72 73 74 75 76
class TestElementwiseMulOp_scalar(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4).astype(np.float32),
            'Y': np.random.rand(1).astype(np.float32)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}


G
gongweibao 已提交
77
class TestElementwiseMulOp_Vector(ElementwiseMulOp):
78 79 80
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
81 82
            'X': np.random.random((32, )).astype("float64"),
            'Y': np.random.random((32, )).astype("float64")
83 84 85 86
        }
        self.outputs = {'Out': np.multiply(self.inputs['X'], self.inputs['Y'])}


G
gongweibao 已提交
87
class TestElementwiseMulOp_broadcast_0(ElementwiseMulOp):
88 89 90 91
    def init_input_output(self):
        self.x = np.random.rand(2, 3, 4).astype(self.dtype)
        self.y = np.random.rand(2).astype(self.dtype)
        self.out = self.x * self.y.reshape(2, 1, 1)
92

93 94
    def init_axis(self):
        self.axis = 0
95 96


G
gongweibao 已提交
97
class TestElementwiseMulOp_broadcast_1(ElementwiseMulOp):
98 99 100
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
101 102
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(3).astype(np.float64)
103 104 105 106 107 108 109 110
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 1)
        }


G
gongweibao 已提交
111
class TestElementwiseMulOp_broadcast_2(ElementwiseMulOp):
112 113 114
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
115 116
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(4).astype(np.float64)
117 118 119 120 121 122 123
        }

        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 1, 4)
        }


G
gongweibao 已提交
124
class TestElementwiseMulOp_broadcast_3(ElementwiseMulOp):
125 126 127
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
128 129
            'X': np.random.rand(2, 3, 4, 5).astype(np.float64),
            'Y': np.random.rand(3, 4).astype(np.float64)
130 131 132 133 134 135 136 137
        }

        self.attrs = {'axis': 1}
        self.outputs = {
            'Out': self.inputs['X'] * self.inputs['Y'].reshape(1, 3, 4, 1)
        }


138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
class TestElementwiseMulOp_broadcast_4(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4).astype(np.float64),
            'Y': np.random.rand(2, 1, 4).astype(np.float64)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}


class TestElementwiseMulOp_broadcast_5(ElementwiseMulOp):
    def setUp(self):
        self.op_type = "elementwise_mul"
        self.inputs = {
            'X': np.random.rand(2, 3, 4, 5).astype(np.float64),
            'Y': np.random.rand(2, 3, 1, 5).astype(np.float64)
        }
        self.outputs = {'Out': self.inputs['X'] * self.inputs['Y']}


W
Wu Yi 已提交
158 159 160 161 162
class TestElementwiseMulOpFp16(ElementwiseMulOp):
    def init_dtype(self):
        self.dtype = np.float16


163 164
if __name__ == '__main__':
    unittest.main()